A novel CAR-T cell product targeting CD74 is an effective therapeutic approach in preclinical mantle cell lymphoma models

Author:

Chan Wing Keung,Williams Jessica,Sorathia Kinnari,Pray Betsy,Abusaleh Kaled,Bian Zehua,Sharma Archisha,Hout Ian,Nishat Shamama,Hanel Walter,Sloan Shelby L.,Yasin Aneeq,Denlinger Nathan,Zhang Xiaoli,Muthusamy Natarajan,Vasu Sumithira,de Lima Marcos,Yang Yiping,Baiocchi Robert,Alinari Lapo

Abstract

Abstract Background Mantle cell lymphoma (MCL) is a rare B-cell non-Hodgkin lymphoma subtype which remains incurable despite multimodal approach including chemoimmunotherapy followed by stem cell transplant, targeted approaches such as the BTK inhibitor ibrutinib, and CD19 chimeric antigen receptor (CAR) T cells. CD74 is a nonpolymorphic type II integral membrane glycoprotein identified as an MHC class II chaperone and a receptor for macrophage migration inhibitory factor. Our group previously reported on CD74's abundant expression in MCL and its ability to increase via pharmacological inhibition of autophagosomal degradation. Milatuzumab, a fully humanized anti-CD74 monoclonal antibody, demonstrated significant activity in preclinical lymphoma models but failed to provide meaningful benefits in clinical trials mainly due to its short half-life. We hypothesized that targeting CD74 using a CAR-T cell would provide potent and durable anti-MCL activity. Methods We engineered a second generation anti-CD74 CAR with 4-1BB and CD3ζ signaling domains (74bbz). Through in silico and rational mutagenesis on the scFV domain, the 74bbz CAR was functionally optimized for superior antigen binding affinity, proliferative signaling, and cytotoxic activity against MCL cells in vitro and in vivo. Results Functionally optimized 74bbz CAR-T cells (clone 42105) induced significant killing of MCL cell lines, and primary MCL patient samples including one relapse after commercial CD19 CAR-T cell therapy with direct correlation between antigen density and cytotoxicity. It significantly prolonged the survival of an animal model established in NOD-SCIDγc−/− (NSG) mice engrafted with a human MCL cell line Mino subcutaneously compared to controls. Finally, while CD74 is also expressed on normal immune cell subsets, treatment with 74bbz CAR-T cells resulted in minimal cytotoxicity against these cells both in vitro and in vivo. Conclusions Targeting CD74 with 74bbz CAR-T cells represents a new cell therapy to provide a potent and durable and anti-MCL activity.

Funder

Pelotonia Idea Grant

OSU Division of Hematology-Sponsored Research Program grant

OSU Department of Internal Medicine Junior Investigator Award

OSU Drug Development Institute Pilot grant

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Oncology,Hematology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3