Homologous recombination-DNA damage response defects increase TMB and neoantigen load, but not effector T cell density and clonal diversity in pancreatic cancer

Author:

Lei Mengyue,Gai Jessica,McPhaul Thomas J.,Luo Huijuan,Lin Penghui,Liu Dongbing,Pishvaian Michael,Roberts Nicholas J.,Wu Kui,He Jin,Zheng Lei

Abstract

Abstract Pancreatic ductal adenocarcinoma (PDAC) is highly resistant to chemotherapy. However, PDAC with germline BRCA mutations, which lead to homologous recombination (HR) deficiency (HRD), demonstrated an increased sensitivity to platinum-based chemotherapy regimens. This increased chemosensitivity was also seen in PDACs with germline or somatic mutations in the DNA double-strand damage response (DDR) genes beyond canonical HR genes such as BRCA1, BRCA2, and PALB2. However, there are no consensus methods to determine HRD status; and neither is there a well-defined list of HR-DDR genes. In addition, how HRD and/or HR-DDR gene mutation status impacts the tumor immune microenvironment including tumor mutation burden (TMB), neoantigen load, T cell receptor (TCR) repertoire, and effector T cell infiltration is unknown. Thus, in this study, we developed a new method to categorize PDACs into HRD-positive and HRD-negative subgroups by using results from whole exome sequencing, whole genome sequencing, or both into consideration. We classified a cohort of 89 PDACs into HRD-positive (n = 18) and HRD-negative (n = 69) tumors. HR-DDR gene variants were identified more frequently in HRD-positive PDACs than HRD-negative PDACs, with RAD51B, BRCA2 and ATM alterations most frequently identified in HRD-positive PDACs. Notably, TMB and neoantigen load was significantly higher in HRD-positive PDACs compared to HRD-negative tumors. Interestingly, HRD-positive PDACs, PDACs with high tumor mutational burden, and PDAC with high neoantigen load were all associated with lower CD8 + T lymphocyte infiltration and T cell clonal diversity, suggesting a mechanism of resistance to immune checkpoint inhibitors (ICIs). Therefore, this study suggests that treatments to enhance effector T cell infiltration and T cell clonal diversity may overcome resistance to ICI-based immunotherapy in HRD-positive PDACs.

Funder

Johns Hopkins Pancreatic Cancer Precision Medicine Center of Excellence program

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3