Author:
Singh Shailendra K.,Singh Ranjeet K.,Singh Krishnakant K.,Singh Ranjeet K.,Singh Siddharth
Abstract
Abstract
Background
The concentration of silica in occupational conditions is well defined and estimated around the world. Many countries in the world have developed air standards for occupational conditions based on the percent silica in ambient air. This is due to the pulmonary effect caused by silica yielding diseases like silicosis and pneumoconiosis. In India, occupational exposure to silica dust is regulated by Directorate General of Mine Safety (Tech.) (S&T) Circular No. 1 of 2004 Under Reg. 123 of Coal Mines Regulations, 1957 for any metal/non-metal mining operations estimated gravimetrically. As no silica standards are prescribed in India for non-occupational conditions, venturing into such analysis was well envisaged and perceived.
Methodology
Air sampling was done at identified locations through high-volume samplers for 24 h, twice a week in pre-monsoon season (March to June) and the Whatman filter paper was sonicated at sufficient speed to isolate dust particles for energy dispersive X-ray.
Results
The percentage of silica in “PM10” was found lowest in mining sites (15%), and highest in transportation sites (35%) and mid-value for mixed sites (24%). Thus, risk level gets magnified due to addition of finer dust generated in transportation and mixed sites than mining due to diesel driven vehicles. Burning of any fossil fuel generates high percentage of finer dust (< 2.5 µm).
Conclusions
There should be proper prescribed standard for silica for non-occupational conditions.
Publisher
Springer Science and Business Media LLC
Reference32 articles.
1. Davis BL, Johnson LR, Stevens RK, Courtney WJ et al (1984) The quartz content and elemental composition of aerosols from selected sites of the EPA inhalable particulate network. Atmos Environ 18:771–782
2. NIOSH, National Institute of Occupational Safety and Health (1994) Manual of analytical methods; method 7602, silica crystalline by IR. 4th (ed) Atlanta: Centers for Disease Control and Prevention
3. Steenland K, Mannetje A, Boffetta P, Stayner L, International Agency for Research on Cancer et al (2001) Pooled exposure response analyses and risk assessment for lung cancer in 10 cohorts of silica-exposed workers: an IARC multicentre study. Cancer Causes Control 12:773–784
4. Background document for silica, crystalline (respirable size) (1998) Report on carcinogens. U.S. Department of Health and Human Services, Public Health Services, National Toxicology Program Research Triangle Park, North Carolina 27709, USA. https://ntp.niehs.nih.gov/ntp/newhomeroc/other_background/silica_no_app_508.pdf. Accessed 15 June 2022
5. Saiyed HN, Tiwary RR (2004) Occupational health research in India. Ind Health 42:141–148
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献