Concentration, sources and health effects of silica in ambient respirable dust of Jharia Coalfields Region, India

Author:

Singh Shailendra K.,Singh Ranjeet K.,Singh Krishnakant K.,Singh Ranjeet K.,Singh Siddharth

Abstract

Abstract Background The concentration of silica in occupational conditions is well defined and estimated around the world. Many countries in the world have developed air standards for occupational conditions based on the percent silica in ambient air. This is due to the pulmonary effect caused by silica yielding diseases like silicosis and pneumoconiosis. In India, occupational exposure to silica dust is regulated by Directorate General of Mine Safety (Tech.) (S&T) Circular No. 1 of 2004 Under Reg. 123 of Coal Mines Regulations, 1957 for any metal/non-metal mining operations estimated gravimetrically. As no silica standards are prescribed in India for non-occupational conditions, venturing into such analysis was well envisaged and perceived. Methodology Air sampling was done at identified locations through high-volume samplers for 24 h, twice a week in pre-monsoon season (March to June) and the Whatman filter paper was sonicated at sufficient speed to isolate dust particles for energy dispersive X-ray. Results The percentage of silica in “PM10” was found lowest in mining sites (15%), and highest in transportation sites (35%) and mid-value for mixed sites (24%). Thus, risk level gets magnified due to addition of finer dust generated in transportation and mixed sites than mining due to diesel driven vehicles. Burning of any fossil fuel generates high percentage of finer dust (< 2.5 µm). Conclusions There should be proper prescribed standard for silica for non-occupational conditions.

Publisher

Springer Science and Business Media LLC

Subject

Pollution

Reference32 articles.

1. Davis BL, Johnson LR, Stevens RK, Courtney WJ et al (1984) The quartz content and elemental composition of aerosols from selected sites of the EPA inhalable particulate network. Atmos Environ 18:771–782

2. NIOSH, National Institute of Occupational Safety and Health (1994) Manual of analytical methods; method 7602, silica crystalline by IR. 4th (ed) Atlanta: Centers for Disease Control and Prevention

3. Steenland K, Mannetje A, Boffetta P, Stayner L, International Agency for Research on Cancer et al (2001) Pooled exposure response analyses and risk assessment for lung cancer in 10 cohorts of silica-exposed workers: an IARC multicentre study. Cancer Causes Control 12:773–784

4. Background document for silica, crystalline (respirable size) (1998) Report on carcinogens. U.S. Department of Health and Human Services, Public Health Services, National Toxicology Program Research Triangle Park, North Carolina 27709, USA. https://ntp.niehs.nih.gov/ntp/newhomeroc/other_background/silica_no_app_508.pdf. Accessed 15 June 2022

5. Saiyed HN, Tiwary RR (2004) Occupational health research in India. Ind Health 42:141–148

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3