Characterization of tropospheric ozone pollution, random forest trend prediction and analysis of influencing factors in South-western Europe

Author:

Wang Jinyang,Ju Tianzhen,Li Bingnan,Huang Cheng,Xia Xuhui,Zhang Jiaming,Li Chunxue

Abstract

AbstractNowadays, environmental problems have gradually become the focus of world attention. In recent years, heat waves in many parts of Europe have increased ozone concentrations, fuelling ozone pollution. Therefore, this paper investigates the spatial and temporal distribution of tropospheric column ozone concentrations in South-western Europe, future trend changes, influencing factors, and potential source regions based on remotely sensed monitoring data from the OMI (Ozone Monitoring Instrument) from 2011 to 2021. The results show that the areas of high tropospheric column ozone concentrations are mainly concentrated in the northwest, Poland, and southeast coastal areas. At the same time, the monthly variation curve of column ozone concentration is bimodal. Trend change analyses indicate an upward trend in future column ozone concentrations in the southeastern part of the study area. The potential for increases also exists in parts of Germany, France, and Poland, which will need to be monitored. Random forest model projections found a slight decrease in column ozone concentrations in 2022 and 2023 of about 1–4 DU compared to tropospheric column ozone concentrations in 2021. The health risk assessment found that the number of all-cause premature deaths due to exposure to ozone was the highest in Germany. During the summer, when ozone pollution is high, the potential source area in the southeastern part of the study area is located at the border of the three countries, and synergistic management is recommended. In exploring the correlation between the influencing factors and ozone, it was found that there is a significant difference between the long-time and short-time series. In addition, the pathway analysis shows that the population size, distribution density, and forested area in southwestern Europe may be more sensitive to the production of tropospheric ozone.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3