Oil-based extraction as an efficient method for the quantification of microplastics in environmental samples

Author:

Lekše Nina,Žgajnar Gotvajn Andreja,Zupančič Marija,Griessler Bulc Tjaša

Abstract

Abstract Background Wastewater treatment plant outlets are a major source of microplastics, with more than 90% retained in sewage sludge. No standardised method for the extraction, quantification, and characterisation of microplastics in sewage sludge or soil exists, and direct comparison of studies is often impossible. Our aim was to validate oil extraction efficiency with and without pre-treatment with Fenton’s reagent of selected microplastics in various types of environmental samples (sewage sludge and organic-rich substrates). Results Oxidation with Fenton’s reagent removed up to 90% of organic material, which improves the recovery rate and made quantification and characterisation easier and more reliable, regardless of type, shape, size, or density of the selected microplastic particles used in this study. Pre-treatment, as a pre-step of the oil extraction method, was shown to be important in reducing organic matter in all environmental samples, including sewage sludge and organic-rich substrates. It also improved the reliability of the selected method, shortened its duration, and, by reducing organic matter, made extracted microplastics more visible. The recovery rate was better for particles 1–5 mm and lower for particles 0.1 < 1 mm. Conclusions By achieving up to a 100% recovery rate for certain types of microplastics (polypropylene and polystyrene), the selected method proved to be a promising extraction method. It was also shown to be efficient in the organic-rich substrates, for which the characterisation of microplastic particles was done by Fourier transform infrared spectroscopy. The most commonly detected types of microplastics in organic-rich substrates were polyethylene, polypropylene, polystyrene and polyester.

Funder

Research project

Research Project

Research Program Chemical Engineering

Infrastructure programme

Mechanisms of Health Maintenance

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3