Cyanobacteria and their secondary metabolites in three freshwater reservoirs in the United Kingdom

Author:

Filatova Daria,Jones Martin R.,Haley John A.,Núñez Oscar,Farré Marinella,Janssen Elisabeth M.-L.ORCID

Abstract

Abstract Background Bloom-forming cyanobacteria occur globally in aquatic environments. They produce diverse bioactive metabolites, some of which are known to be toxic. The most studied cyanobacterial toxins are microcystins, anatoxin, and cylindrospermopsin, yet more than 2000 bioactive metabolites have been identified to date. Data on the occurrence of cyanopeptides other than microcystins in surface waters are sparse. Results We used a high-performance liquid chromatography–high-resolution tandem mass spectrometry/tandem mass spectrometry (HPLC–HRMS/MS) method to analyse cyanotoxin and cyanopeptide profiles in raw drinking water collected from three freshwater reservoirs in the United Kingdom. A total of 8 cyanopeptides were identified and quantified using reference standards. A further 20 cyanopeptides were identified based on a suspect-screening procedure, with class-equivalent quantification. Samples from Ingbirchworth reservoir showed the highest total cyanopeptide concentrations, reaching 5.8, 61, and 0.8 µg/L in August, September, and October, respectively. Several classes of cyanopeptides were identified with anabaenopeptins, cyanopeptolins, and microcystins dominating in September with 37%, 36%, and 26%, respectively. Samples from Tophill Low reservoir reached 2.4 µg/L in September, but remained below 0.2 µg/L in other months. Samples from Embsay reservoir did not exceed 0.1 µg/L. At Ingbirchworth and Tophill Low, the maximum chlorophyll-a concentrations of 37 µg/L and 22 µg/L, respectively, and cyanobacterial count of 6 × 104 cells/mL were observed at, or a few days after, peak cyanopeptide concentrations. These values exceed the World Health Organization’s guideline levels for relatively low probability of adverse health effects, which are defined as 10 µg/L chlorophyll-a and 2 × 104 cells/mL. Conclusions This data is the first to present concentrations of anabaenopeptins, cyanopeptolins, aeruginosins, and microginins, along with microcystins, in U.K. reservoirs. A better understanding of those cyanopeptides that are abundant in drinking water reservoirs can inform future monitoring and studies on abatement efficiency during water treatment.

Funder

Horizon 2020

Publisher

Springer Science and Business Media LLC

Subject

Pollution

Reference45 articles.

1. Chorus I, Bartram J (1999) Toxic cyanobacteria in water : a guide to their public health consequences, monitoring and management / edited by Ingrid Chorus and Jamie Bertram. World Health Organization, Geneva

2. Mantzouki E, Visser PM, Bormans M, Ibelings BW (2016) Understanding the key ecological traits of cyanobacteria as a basis for their management and control in changing lakes. Aquat Ecol 50(3):333–350

3. Dokulil MT, Teubner K (2000) Cyanobacterial dominance in lakes. Hydrobiologia 438(1):1–12

4. World Health, O., Guidelines for safe recreational water environments. Volume 1, Coastal and fresh waters. 2003, World Health Organization: Geneva.

5. Jones MR, Pinto E, Torres MA, Dörr F, Mazur-Marzec H, Szubert K, Tartaglione L, Dell’Aversano C, Miles CO, Beach DG, McCarron P, Sivonen K, Fewer DP, Jokela J, Janssen EML (2020) Comprehensive database of secondary metabolites from cyanobacteria. bioRxiv 78:7

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3