Abstract
Abstract
Background
The reconstruction of the pollution history using aquatic sedimentary archives is of major relevance not only for the present and past, but also for future actions. The extent and influence of past anthropogenic emissions can be correlated with site-specific (e.g., industrial) developments as well as political actions, regulations, and initiatives. Finally, the need for further restrictions, specific monitoring or other countermeasures can be defined. Accordingly, within the scope of this study, a drilling core of subaquatic sediment was comprehensively analyzed to reconstruct the pollution history of the Urft reservoir and to understand the linkage between introduction, fate, and behavior of different organic pollutants.
Results
The Urft reservoir is well suitable for pollution reconstruction as the investigated interval covered a period of nearly 60 years of undisturbed sedimentation of fine-grained material. Additionally, specific input factors and their development (e.g., in industrial production) could be easily correlated with the emission profile detected for the reservoir. Overall, quantitative data of more than 60 lipophilic organic compounds were obtained and traced back to urban and industrial emissions. Concentrations were mainly in the range of ng/gTOC–µg/gTOC showing a decreasing tendency toward the surface and, thus, the effectiveness of political regulations. In addition, a clear maximum was detected for almost all substances at the end of the 1970s/beginning of the 1980s, probably related to an exceptional event such as a flood or a malfunction affecting wastewater-related compounds of both urban and industrial origin.
Conclusions
Based on the organic-geochemical investigation and the associated dating, it was possible to reconstruct the pollution history of the Urft catchment in the northern Eifel mountains. Overall, organic indicators have proven to be very useful to obtain information on distribution patterns and the influence of industrial as well as governmental actions. For instance, catchment-specific developments such as the closure of ironworks were recognizable in the identified emission patterns. Generally, in the last 50 years, the pollution of the reservoir sediment has decreased clearly showing the efficiency of increasing environmental awareness and corresponding regulations.
Publisher
Springer Science and Business Media LLC
Reference101 articles.
1. Abdel-Shafy HI, Mansour MS (2016) A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation. Egypt J Pet 25:107–123. https://doi.org/10.1016/j.ejpe.2015.03.011
2. Ayrault S, Meybeck M, Mouchel J-M, Gaspéri J, Lestel L, Lorgeoux C, Boust D (2021) Sedimentary archives reveal the concealed history of micropollutant contamination in the seine river basin. In: Flipo N, Labadie P, Lestel L (eds) the Seine River Basin. Springer Nature, Cham
3. Baek SO, Field RA, Goldstone ME, Kirk PW, Lester JN, Perry R (1991) A review of atmospheric polycyclic aromatic hydrocarbons: sources, fate and behavior. Water Air Soil Pollut 60:279–300. https://doi.org/10.1007/BF00282628
4. Balmer ME, Poiger T, Droz C, Romanin K, Bergqvist P-A, Müller MD, Buser H-R (2004) Occurrence of methyl triclosan, a transformation product of the bactericide triclosan, in fish from various lakes in Switzerland. Environ Sci Technol 38:390–395. https://doi.org/10.1021/es030068p
5. Bellanova P, Feist L, Costa PJM, Orywol S, Reicherter K, Lehmkuhl F, Schwarzbauer J (2022) Contemporary pollution of surface sediments from the Algarve shelf. Portugal Mar Pollut Bull 176:113410. https://doi.org/10.1016/j.marpolbul.2022.113410