Improved component-based methods for mixture risk assessment are key to characterize complex chemical pollution in surface waters

Author:

Posthuma Leo,Altenburger Rolf,Backhaus Thomas,Kortenkamp Andreas,Müller Christin,Focks Andreas,de Zwart Dick,Brack WernerORCID

Abstract

Abstract The present monitoring and assessment of water quality problems fails to characterize the likelihood that complex mixtures of chemicals affect water quality. The European collaborative project SOLUTIONS suggests that this likelihood can be estimated, amongst other methods, with improved component-based methods (CBMs). The use of CBMs is a well-established practice in the WFD, as one of the lines of evidence to evaluate chemical pollution on a per-chemical basis. However, this is currently limited to a pre-selection of 45 and approximately 300 monitored substances (priority substances and river basin-specific pollutants, respectively), of which only a few actually co-occur in relevant concentrations in real-world mixtures. Advanced CBM practices are therefore needed that consider a broader, realistic spectrum of chemicals and thereby improve the assessment of mixture impacts, diagnose the causes of observed impacts and provide more useful water management information. Various CBMs are described and illustrated, often representing improvements of well-established methods. Given the goals of the WFD and expanding on current guidance for risk assessment, these improved CBMs can be applied to predicted or monitored concentrations of chemical pollutants to provide information for management planning. As shown in various examples, the outcomes of the improved CBMs allow for the evaluation of the current likelihood of impacts, of alternative abatement scenarios as well as the expected consequences of future pollution scenarios. The outputs of the improved CBMs are useful to underpin programmes of measures to protect and improve water quality. The combination of CBMs with effect-based methods (EBMs) might be especially powerful to identify as yet underinvestigated emerging pollutants and their importance in a mixture toxicity context. The present paper has been designed as one in a series of policy briefs to support decisions on water quality protection, monitoring, assessment and management under the European Water Framework Directive (WFD).

Publisher

Springer Science and Business Media LLC

Subject

Pollution

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3