High-content screening image dataset and quantitative image analysis of Salmonella infected human cells

Author:

Antoniou Antony N.,Powis Simon J.,Kriston-Vizi JanosORCID

Abstract

Abstract Objectives Salmonella bacteria can induce the unfolded protein response, a cellular stress response to misfolding proteins within the endoplasmic reticulum. Salmonella can exploit the host unfolded protein response leading to enhanced bacterial replication which was in part mediated by the induction and/or enhanced endo-reticular membrane synthesis. We therefore wanted to establish a quantitative confocal imaging assay to measure endo-reticular membrane expansion following Salmonella infections of host cells. Data description High-content screening confocal fluorescence microscopic image set of Salmonella infected HeLa cells is presented. The images were collected with a PerkinElmer Opera LX high-content screening system in seven 96-well plates, 50 field-of-views and DAPI, endoplasmic reticulum tracker channels and Salmonella mCherry protein in each well. Totally 93,300 confocal fluorescence microscopic images were published in this dataset. An ImageJ high-content image analysis workflow was used to extract features. Cells were classified as infected and non-infected, the mean intensity of endoplasmic reticulum tracker under Salmonella bacteria was calculated. Statistical analysis was performed by an R script, quantifying infected and non-infected cells for wild-type and ΔsifA mutant cells. The dataset can be further used by researchers working with big data of endoplasmic reticulum fluorescence microscopic images, Salmonella bacterial infection images and human cancer cells.

Funder

Medical Research Council

FP7 People: Marie-Curie Actions

Arthritis Research UK

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3