Abstract
AbstractPrognostics and Health Management (PHM), including monitoring, diagnosis, prognosis, and health management, occupies an increasingly important position in reducing costly breakdowns and avoiding catastrophic accidents in modern industry. With the development of artificial intelligence (AI), especially deep learning (DL) approaches, the application of AI-enabled methods to monitor, diagnose and predict potential equipment malfunctions has gone through tremendous progress with verified success in both academia and industry. However, there is still a gap to cover monitoring, diagnosis, and prognosis based on AI-enabled methods, simultaneously, and the importance of an open source community, including open source datasets and codes, has not been fully emphasized. To fill this gap, this paper provides a systematic overview of the current development, common technologies, open source datasets, codes, and challenges of AI-enabled PHM methods from three aspects of monitoring, diagnosis, and prognosis.
Funder
National Key Research and Development Program of China
Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering
Cited by
92 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献