Abstract
AbstractIn gear transmission, temperature rise has a non-negligible impact on the accuracy, noise and transmission efficiency. However, there is no relevant research on the temperature rise of the anti-backlash single-roller enveloping hourglass worm (ASEHW) gear. To solve this problem, based on tribology principle and Hertz contact theory, the thermal power calculation method of the ASEHW gear was proposed for the first time and thermal analysis was carried out by Ansys software. The bulk temperature of the ASEHW gear under four different rotating speed (300 r/min, 600 r/min, 900 r/min, 1200 r/min) is calculated. The main factors causing temperature rise of the ASEHW gear are analyzed theoretically. Meanwhile, an experimental study is performed to verify the simulation results and validate the theory methods. The theory presented in this paper provides a solution for the thermal power calculation of ASEHW gear. This research provides a theoretical basis for further optimization of ASEHW gear.
Funder
National Natural Science Foundation of China
The Innovation Fund of Postgraduate of Xihua University
Publisher
Springer Science and Business Media LLC
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献