Pre-compensation of Friction for CNC Machine Tools through Constructing a Nonlinear Model Predictive Scheme

Author:

Xiao Qunbao,Wan MinORCID,Qin Xuebin

Abstract

AbstractNonlinear friction is a dominant factor affecting the control accuracy of CNC machine tools. This paper proposes a friction pre-compensation method for CNC machine tools through constructing a nonlinear model predictive scheme. The nonlinear friction-induced tracking error is firstly modeled and then utilized to establish the nonlinear model predictive scheme, which is subsequently used to optimize the compensation signal by treating the friction-induced tracking error as the optimization objective. During the optimization procedure, the derivative of compensation signal is constrained to avoid vibration of machine tools. In contrast to other existing approaches, the proposed method only needs the parameters of Stribeck friction model and an additional tuning parameter, while finely identifying the parameters related to the pre-sliding phenomenon is not required. As a result, it greatly facilitates the practical applicability. Both air cutting and real cutting experiments conducted on an in-house developed open-architecture CNC machine tool prove that the proposed method can reduce the tracking errors by more than 56%, and reduce the contour errors by more than 50%.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3