High-resolution Transmission Electron Microscopy Characterization of the Structure of Cu Precipitate in a Thermal-aged Multicomponent Steel

Author:

Han Lizhan,Liu Qingdong,Gu Jianfeng

Abstract

Abstract High-dispersed nanoscale Cu precipitates often contribute to extremely high strength due to precipitation hardening, and whereas usually lead to degraded toughness for especially ferritic steels. Hence, it is important to understand the formation behaviors of the Cu precipitates. High-resolution transmission electron microscopy (TEM) is utilized to investigate the structure of Cu precipitates thermally formed in a high-strength low-alloy (HSLA) steel. The Cu precipitates were generally formed from solid solution and at the crystallographic defects such as martensite lath boundaries and dislocations. The Cu precipitates in the same aging condition have various structure of BCC, 9R and FCC, and the structural evolution does not greatly correlate with the actual sizes. The presence of different structures in an individual Cu precipitate is observed, which reflects the structural transformation occurring locally to relax the strain energy. The multiply additions in the steel possibly make the Cu precipitation more complex compared to the binary or the ternary Fe–Cu alloys with Ni or Mn additions. This research gives constructive suggestions on alloying design of Cu-bearing alloy steels.

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3