Abstract
AbstractModern-day microtomy requires high precision equipment to thinly section biological tissues. The sectioned tissue must be of good quality not showing cutting tracks or so-called artefacts. The quality of these sections is dependent on the blade wear, which is related to the hardness of the tissue sample, cutting angle and cutting speed. A test rig has been designed and manufactured to allow these parameters to be controlled. This has allowed for the blade wear to be analysed and quantified, and this has been completed for both ultrasonically assisted and conventional cutting. The obtained results showed a 25.2% decrease in average blade roughness after 38 cuts when using the ultrasonically assisted cutting regime. The data also showed no adverse effect on the quality of the slides produced when using this cutting methodology. Finally, the cutting force measured for both cutting regimes showed that ultrasonically assisted cutting required less force compared to conventional cutting. With the reduction of surface roughness and force, it is possible to state that ultrasonically assisted cutting reduces the wear of the blade, thereby increasing the life of the blades. An increase of just 10% in blade life would yield a cost saving of approximately 25% thereby reducing the environmental and financial impact of microtomy.
Publisher
Springer Science and Business Media LLC
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献