Does consensus contours improve robustness and accuracy on $$^{18}$$F-FDG PET imaging tumor delineation?

Author:

Zhuang Mingzan,Qiu Zhifen,Lou Yunlong

Abstract

Abstract Purpose: The aim of this study is to explore the robustness and accuracy of consensus contours with 225 nasopharyngeal carcinoma (NPC) clinical cases and 13 extended cardio-torso simulated lung tumors (XCAT) based on 2-deoxy-2-[$$^{18}$$ 18 F]fluoro-D-glucose ($$^{18}$$ 18 F-FDG) PET imaging. Methods: Primary tumor segmentation was performed with two different initial masks on 225 NPC $$^{18}$$ 18 F-FDG PET datasets and 13 XCAT simulations using methods of automatic segmentation with active contour, affinity propagation (AP), contrast-oriented thresholding (ST), and 41% maximum tumor value (41MAX), respectively. Consensus contours (ConSeg) were subsequently generated based on the majority vote rule. The metabolically active tumor volume (MATV), relative volume error (RE), Dice similarity coefficient (DSC) and their respective test–retest (TRT) metrics between different masks were adopted to analyze the results quantitatively. The nonparametric Friedman and post hoc Wilcoxon tests with Bonferroni adjustment for multiple comparisons were performed with $$P<$$ P < 0.05 considered to be significant. Results: AP presented the highest variability for MATV in different masks, and ConSeg presented much better TRT performances in MATV compared with AP, and slightly poorer TRT in MATV compared with ST or 41MAXin most cases. Similar trends were also found in RE and DSC with the simulated data. The average of four segmentation results (AveSeg) showed better or comparable results in accuracy for most cases with respect to ConSeg. AP, AveSeg and ConSeg presented better RE and DSC in irregular masks as compared with rectangle masks. Additionally, all methods underestimated the tumour boundaries in relation to the ground truth for XCAT including respiratory motion. Conclusions: The consensus method could be a robust approach to alleviate segmentation variabilities, but did not seem to improve the accuracy of segmentation results on average. Irregular initial masks might be at least in some cases attributable to mitigate the segmentation variability as well.

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Biomedical Engineering,Radiation

Reference43 articles.

1. Daisne J-F, Duprez T, Weynand B, Lonneux M, Hamoir M, Reychler H, Grégoire V. Tumor volume in pharyngolaryngeal squamous cell carcinoma: comparison at CT, MR imaging, and FDG pet and validation with surgical specimen. Radiology. 2004;233(1):93–100. https://doi.org/10.1148/radiol.2331030660.

2. Mohandas A, Marcus C, Kang H, Truong M-T, Subramaniam RM. FDG PET/CT in the management of nasopharyngeal carcinoma. AJR Am J Roentgenol. 2014;203(2):146–57. https://doi.org/10.2214/AJR.13.12420.

3. Shen G, Xiao W, Han F, Fan W, Lin X-P, Lu L, Zheng L, Yue N, Haffty B, Zhao C, Deng X. Advantage of PET/CT in target delineation of MRI-negative cervical lymph nodes in intensity-modulated radiation therapy planning for nasopharyngeal carcinoma. J Cancer. 2017;8(19):4117–23. https://doi.org/10.7150/jca.21582.

4. ...Hatt M, Lee JA, Schmidtlein CR, Naqa IE, Caldwell C, De Bernardi E, Lu W, Das S, Geets X, Gregoire V, Jeraj R, MacManus MP, Mawlawi OR, Nestle U, Pugachev AB, Schöder H, Shepherd T, Spezi E, Visvikis D, Zaidi H, Kirov AS. Classification and evaluation strategies of auto-segmentation approaches for PET: Report of AAPM task group no. 211. Med Phys. 2017;44(6):1–42. https://doi.org/10.1002/mp.12124.

5. Nestle U, Kremp S, Schaefer-Schuler A, Sebastian-Welsch C, Hellwig D, Rübe C, Kirsch C-M. Comparison of different methods for delineation of 18F-FDG PET–positive tissue for target volume definition in radiotherapy of patients with non-small cell lung cancer. J Nucl Med Off Publ Soc Nucl Med. 2005;46(8):1342–8.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3