Activation of Retinoid X Receptor increases dopamine cell survival in models for Parkinson's disease

Author:

Friling Stina,Bergsland Maria,Kjellander Susanna

Abstract

Abstract Background Parkinson's disease (PD) is caused by degeneration of dopamine (DA) neurons in the ventral midbrain (vMB) and results in severely disturbed regulation of movement. The disease inflicts considerable suffering for the affected and their families. Today, the opportunities for pharmacological treatment are meager and new technologies are needed. Previous studies have indicated that activation of the nuclear receptor Retinoid X Receptor (RXR) provides trophic support for DA neurons. Detailed investigations of these neurotrophic effects have been hampered by the lack of readily available DA neurons in vitro. The aim of this study was to further describe the potential neurotrophic actions of RXR ligands and, for this and future purposes, develop a suitable in vitro-platform using mouse embryonic stem cells (mESCs). Results We studied the potential neurotrophic effects of the RXR ligand LG100268 (LG268) and the RXR-Nurr1 ligand XCT0139508 (XCT) in neuronal cultures derived from rat primary vMB and mESCs. RXR ligands protect DA neurons from stress, such as that induced by the PD-modeling toxin 6-hydroxy dopamine (6-OHDA) and hypoxia, but not from stress induced by oxidative hydrogen peroxide (H2O2) or the excitotoxic agent kainic acid (KA). The neurotrophic effect is selective for DA neurons. DA neurons from rat primary vMB and mESCs behaved similarly, but the mESC-derived cultures contained a much higher fraction of DA cells and thus provided more accessible experimental conditions. Conclusions RXR ligands rescue DA neurons from degeneration caused by the PD simulating 6-OHDA as well as hypoxia. Thus, RXR is a novel promising target for PD research. mESC-derived DA cells provide a valid and accessible in vitro-platform for studying PD inducing toxins and potential trophic agents.

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,General Neuroscience

Reference37 articles.

1. Selby G: The long-term prognosis of Parkinson's disease. The Graeme Robertson Memorial Lecture1983. Clin Exp Neurol. 1983, 20: 1-25. 1984

2. Spillantini MG, Goedert M: The alpha-synucleinopathies: Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. Ann N Y Acad Sci. 2000, 920: 16-27.

3. Shastry BS: Parkinson disease: etiology, pathogenesis and future of gene therapy. Neurosci Res. 2001, 41: 5-12. 10.1016/S0168-0102(01)00254-1.

4. Gerfen CR, Wilson CJ: The basal ganglia. Handbook of chemical neuroanatomy. Edited by: Swanson LW, Björklund A, Hökfelt T. 1996, Amsterdam: Elsevier, 12: 371-468. full_text. [Björklund A, Hökfelt T (Series Editor): Integrated systems of the CNS, part III]

5. Boehm M, Zhang L, Zhi L, McClurg M, Berger E, Wagoner M, Mais D, Suto C, Davies P, Heyman R, Nadzan A: Design and synthesis of potent retinoid × receptor selective ligands that induce apoptosis in leukemia cells. J Med Chem. 1995, 38: 3146-3155. 10.1021/jm00016a018.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3