Author:
Friling Stina,Bergsland Maria,Kjellander Susanna
Abstract
Abstract
Background
Parkinson's disease (PD) is caused by degeneration of dopamine (DA) neurons in the ventral midbrain (vMB) and results in severely disturbed regulation of movement. The disease inflicts considerable suffering for the affected and their families. Today, the opportunities for pharmacological treatment are meager and new technologies are needed. Previous studies have indicated that activation of the nuclear receptor Retinoid X Receptor (RXR) provides trophic support for DA neurons. Detailed investigations of these neurotrophic effects have been hampered by the lack of readily available DA neurons in vitro. The aim of this study was to further describe the potential neurotrophic actions of RXR ligands and, for this and future purposes, develop a suitable in vitro-platform using mouse embryonic stem cells (mESCs).
Results
We studied the potential neurotrophic effects of the RXR ligand LG100268 (LG268) and the RXR-Nurr1 ligand XCT0139508 (XCT) in neuronal cultures derived from rat primary vMB and mESCs. RXR ligands protect DA neurons from stress, such as that induced by the PD-modeling toxin 6-hydroxy dopamine (6-OHDA) and hypoxia, but not from stress induced by oxidative hydrogen peroxide (H2O2) or the excitotoxic agent kainic acid (KA). The neurotrophic effect is selective for DA neurons. DA neurons from rat primary vMB and mESCs behaved similarly, but the mESC-derived cultures contained a much higher fraction of DA cells and thus provided more accessible experimental conditions.
Conclusions
RXR ligands rescue DA neurons from degeneration caused by the PD simulating 6-OHDA as well as hypoxia. Thus, RXR is a novel promising target for PD research. mESC-derived DA cells provide a valid and accessible in vitro-platform for studying PD inducing toxins and potential trophic agents.
Publisher
Springer Science and Business Media LLC
Subject
Cellular and Molecular Neuroscience,General Neuroscience
Reference37 articles.
1. Selby G: The long-term prognosis of Parkinson's disease. The Graeme Robertson Memorial Lecture1983. Clin Exp Neurol. 1983, 20: 1-25. 1984
2. Spillantini MG, Goedert M: The alpha-synucleinopathies: Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. Ann N Y Acad Sci. 2000, 920: 16-27.
3. Shastry BS: Parkinson disease: etiology, pathogenesis and future of gene therapy. Neurosci Res. 2001, 41: 5-12. 10.1016/S0168-0102(01)00254-1.
4. Gerfen CR, Wilson CJ: The basal ganglia. Handbook of chemical neuroanatomy. Edited by: Swanson LW, Björklund A, Hökfelt T. 1996, Amsterdam: Elsevier, 12: 371-468. full_text. [Björklund A, Hökfelt T (Series Editor): Integrated systems of the CNS, part III]
5. Boehm M, Zhang L, Zhi L, McClurg M, Berger E, Wagoner M, Mais D, Suto C, Davies P, Heyman R, Nadzan A: Design and synthesis of potent retinoid × receptor selective ligands that induce apoptosis in leukemia cells. J Med Chem. 1995, 38: 3146-3155. 10.1021/jm00016a018.
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献