Explicit-memory multiresolution adaptive framework for speech and music separation

Author:

Bellur Ashwin,Thakkar Karan,Elhilali MounyaORCID

Abstract

AbstractThe human auditory system employs a number of principles to facilitate the selection of perceptually separated streams from a complex sound mixture. The brain leverages multi-scale redundant representations of the input and uses memory (or priors) to guide the selection of a target sound from the input mixture. Moreover, feedback mechanisms refine the memory constructs resulting in further improvement of selectivity of a particular sound object amidst dynamic backgrounds. The present study proposes a unified end-to-end computational framework that mimics these principles for sound source separation applied to both speech and music mixtures. While the problems of speech enhancement and music separation have often been tackled separately due to constraints and specificities of each signal domain, the current work posits that common principles for sound source separation are domain-agnostic. In the proposed scheme, parallel and hierarchical convolutional paths map input mixtures onto redundant but distributed higher-dimensional subspaces and utilize the concept of temporal coherence to gate the selection of embeddings belonging to a target stream abstracted in memory. These explicit memories are further refined through self-feedback from incoming observations in order to improve the system’s selectivity when faced with unknown backgrounds. The model yields stable outcomes of source separation for both speech and music mixtures and demonstrates benefits of explicit memory as a powerful representation of priors that guide information selection from complex inputs.

Funder

National Institutes of Health

Office of Naval Research Global

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Acoustics and Ultrasonics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3