Bivariate extreme value analysis of extreme temperature and mortality in Canada, 2000-2020

Author:

Zhang Yuqing,Wang Kai,Ren Junjie,Liu Yixuan,Ma Fei,Li Tenglong,Chen Ying,Ling Chengxiu

Abstract

AbstractClimate change increases the risk of illness through rising temperature, severe precipitation and worst air pollution. This paper investigates how monthly excess mortality rate is associated with the increasing frequency and severity of extreme temperature in Canada during 2000-2020. The extreme associations were compared among four age groups across five sub-blocks of Canada based on the datasets of monthly T90 and T10, the two most representative indices of severe weather monitoring measures developed by the actuarial associations in Canada and US. We utilize a combined seasonal Auto-regressive Integrated Moving Average (ARIMA) and bivariate Peaks-Over-Threshold (POT) method to investigate the extreme association via the extreme tail index $$\chi$$ χ and Pickands dependence function plots. It turns out that it is likely (more than 10%) to occur with excess mortality if there are unusual low temperature with extreme intensity (all $$\chi >0.1$$ χ > 0.1 except Northeast Atlantic (NEA), Northern Plains (NPL) and Northwest Pacific (NWP) for age group 0-44), while extreme frequent high temperature seems not to affect health significantly (all $$\chi \le 0.001$$ χ 0.001 except NWP). Particular attention should be paid to NWP and Central Arctic (CAR) since population health therein is highly associated with both extreme frequent high and low temperatures (both $$\chi =0.3182$$ χ = 0.3182 for all age groups). The revealed extreme dependence is expected to help stakeholders avoid significant ramifications with targeted health protection strategies from unexpected consequences of extreme weather events. The novel extremal dependence methodology is promisingly applied in further studies of the interplay between extreme meteorological exposures, social-economic factors and health outcomes.

Funder

Xi’an Jiaotong-Liverpool University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3