Short-term effect of particulate matter on lung function and impulse oscillometry system (IOS) parameters of chronic obstructive pulmonary disease (COPD) in Beijing, China

Author:

Zhu Rui-xia,Nie Xiu-hong,Liu Xiao-fang,Zhang Yong-xiang,Chen Jin,Liu Xue-jiao,Hui Xin-jie

Abstract

Abstract Objective This study aimed to evaluate the associations between particulate matter (PM), lung function and Impulse Oscillometry System (IOS) parameters in chronic obstructive pulmonary disease (COPD) patients and identity effects between different regions in Beijing, China. Methods In this retrospective study, we recruited 1348 outpatients who visited hospitals between January 2016 and December 2019. Ambient air pollutant data were obtained from the central monitoring stations nearest the participants’ residential addresses. We analyzed the effect of particulate matter with aerodynamic diameter ≤ 2.5 μm (PM2.5) exposure on lung function and IOS parameters using a multiple linear regression model, adjusting for sex, smoking history, education level, age, body mass index (BMI), mean temperature, and relative humidity . Results The results showed a relationship between PM2.5, lung function and IOS parameters. An increase of 10 µg/m3 in PM2.5 was associated with a decline of 2.083% (95% CI: −3.047 to − 1.103) in forced expiratory volume in one second /predict (FEV1%pred), a decline of 193 ml/s (95% CI: −258 to − 43) in peak expiratory flow (PEF), a decline of 0.932% (95% CI: −1.518 to − 0.342) in maximal mid-expiratory flow (MMEF); an increase of 0.732 Hz (95% CI: 0.313 to 1.148) in resonant frequency (Fres), an increase of 36 kpa/(ml/s) (95% CI: 14 to 57) in impedance at 5 Hz (Z5) and an increase of 31 kpa/(ml/s) (95% CI: 2 to 54) in respiratory impedance at 5 Hz (R5). Compared to patients in the central district, those in the southern district had lower FEV1/FVC, FEV1%pred, PEF, FEF75%, MMEF, X5, and higher Fres, Z5 and R5 (p < 0.05). Conclusion Short-term exposure to PM2.5 was associated with reductions in lung function indices and an increase in IOS results in patients with COPD. The heavier the PM2.5, the more severe of COPD.

Publisher

Springer Science and Business Media LLC

Subject

Public Health, Environmental and Occupational Health

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3