Research on the relationship between common metabolic syndrome and meteorological factors in Wuhu, a subtropical humid city of China

Author:

Zhang Tao,Ni Man,Jia Juan,Deng Yujie,Sun Xiaoya,Wang Xinqi,Chen Yuting,Fang Lanlan,Zhao Hui,Xu Shanshan,Ma Yubo,Zhu Jiansheng,Pan Faming

Abstract

AbstractAs climate conditions deteriorate, human health faces a broader range of threats. This study aimed to determine the risk of death from metabolic syndrome (MetS) due to meteorological factors. We collected daily data from 2014 to 2020 in Wuhu City, including meteorological factors, environmental pollutants and death data of common MetS (hypertension, hyperlipidemia and diabetes), as well as a total number of 15,272 MetS deaths. To examine the relationship between meteorological factors, air pollutants, and MetS mortality, we used a generalized additive model (GAM) combined with a distributed delay nonlinear model (DLNM) for time series analysis. The relationship between the above factors and death outcomes was preliminarily evaluated using Spearman analysis and structural equation modeling (SEM). As per out discovery, diurnal temperature range (DTR) and daily mean temperature (T mean) increased the MetS mortality risk notably. The ultra low DTR raised the MetS mortality risk upon the general people, with the highest RR value of 1.033 (95% CI: 1.002, 1.065) at lag day 14. In addition, T mean was also significantly associated with MetS death. The highest risk of ultra low and ultra high T mean occured on the same day (lag 14), RR values were 1.043 (95% CI: 1.010, 1.077) and 1.032 (95% CI: 1.003, 1.061) respectively. Stratified analysis’s result showed lower DTR had a more pronounced effect on women and the elderly, and ultra low and high T mean was a risk factor for MetS mortality in women and men. The elderly need to take extra note of temperature changes, and different levels of T mean will increase the risk of death. In warm seasons, ultra high RH and T mean can increase the mortality rate of MetS patients.

Funder

National Natural Science Foundation of China

the funds for Scientific Research of Anhui Medical University

Publisher

Springer Science and Business Media LLC

Subject

Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3