The impact of non-pharmaceutical interventions on the first COVID-19 epidemic wave in South Africa

Author:

Mabuka Thabo,Ncube Nesisa,Ross Michael,Silaji Andrea,Macharia Willie,Ndemera Tinashe,Lemeke Tlaleng

Abstract

Abstract Objective In this study, we investigated the impact of COVID-19 NPIs in South Africa to understand their effectiveness in the reduction of transmission of COVID-19 in the South African population. This study also investigated the COVID-19 testing, reporting, hospitalised cases, excess deaths and COVID-19 modelling in the first wave of the COVID-19 epidemic in South Africa. Methods A semi-reactive stochastic COVID-19 model, the ARI COVID-19 SEIR model, was used to investigate the impact of NPIs in South Africa to understand their effectiveness in the reduction of COVID-19 transmission in the South African population. COVID-19 testing, reporting, hospitalised cases and excess deaths in the first COVID-19 epidemic wave in South Africa were investigated using regressional analysis and descriptive statistics. Findings The general trend in population movement in South African locations shows that the COVID-19 NPIs (National Lockdown Alert Levels 5,4,3,2) were approximately 30% more effective in reducing population movement concerning each increase by 1 Alert Level. The translated reduction in the effective SARS-CoV-2 daily contact number (β) was 6.12% to 36.1% concerning increasing Alert Levels. Due to the implemented NPIs, the effective SARS-CoV-2 daily contact number in the first COVID-19 epidemic wave in South Africa was reduced by 58.1–71.1% while the peak was delayed by 84 days. The estimated COVID-19 reproductive number was between 1.98 to 0.40. During South Africa’s first COVID-19 epidemic wave, the mean COVID-19 admission status in South African hospitals was 58.5%, 95% CI [58.1–59.0] in the general ward, 13.4%, 95% CI [13.1–13.7] in the intensive care unit, 13.3%, 95% CI [12.6–14.0] on oxygen, 6.37%, 95% CI [6.23–6.51] in high care, 6.29%, 95% CI [6.02–6.55] on ventilator and 2.13%, 95% CI [1.87–2.43] in isolation ward respectively. The estimated mean South African COVID-19 patient discharge rate was 11.9 days per patient. While the estimated mean of the South African COVID-19 patient case fatality rate (CFR) in hospital and outside the hospital was 2.06%, 95% CI [1.86–2.25] (deaths per admitted patients) and 2.30%, 95% CI [1.12–3.83](deaths per severe and critical cases) respectively. The relatively high coefficient of variance in COVID-19 model outputs observed in this study shows the uncertainty in the accuracy of the reviewed COVID-19 models in predicting the severity of COVID-19. However, the reviewed COVID-19 models were accurate in predicting the progression of the first COVID-19 epidemic wave in South Africa. Conclusion The results from this study show that the COVID-19 NPI policies implemented by the Government of South Africa played a significant role in the reduction of COVID-19 active, hospitalised cases and deaths in South Africa’s first COVID-19 epidemic wave. The results also show the use of COVID-19 modelling to understand the COVID-19 pandemic and the impact of regressor variables in an epidemic.

Publisher

Springer Science and Business Media LLC

Subject

Public Health, Environmental and Occupational Health

Reference102 articles.

1. Hethcote HW. Three basic epidemiological models. 1989. p. 119–44.

2. WHO. Naming the coronavirus disease (COVID-19) and the virus that causes it. @2020 WHO. 2020 [cited 22 June 2020]. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/naming-the-coronavirus-disease-(covid-2019)-and-the-virus-that-causes-it.

3. Guo YR, Cao QD, Hong ZS, Tan YY, Chen SD, Jin HJ, et al. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak- A n update on the status. Mil Med Res Military Medical Research. 2020;7:1–10.

4. Shereen MA, Khan S, Kazmi A, Bashir N, Siddique R. COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. J Adv Res. 2020;24:91–8. https://doi.org/10.1016/j.jare.2020.03.005. THE AUTHORS.

5. WHO. Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19). WHO-China Jt Mission Coronavirus Dis 2019. 2020;1:40. Available from: https://www.who.int/publications-detail/report-of-the-who-china-joint-mission-on-coronavirus-disease-2019-(covid-19)%0A, https://www.who.int/docs/default-source/coronaviruse/who-china-joint-mission-on-covid-19-final-report.pdf.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3