Author:
Chen Ye,Hou Weiming,Hou Weiyu,Dong Jing
Abstract
Abstract
Background
Previous studies have typically explored the daily lagged relations between influenza and meteorology, but few have explored seasonally the monthly lagged relationship, interaction and multiple prediction between influenza and pollution. Our specific objectives are to evaluate the lagged and interaction effects of pollution factors and construct models for estimating influenza incidence in a hierarchical manner.
Methods
Our researchers collect influenza case data from 2005 to 2018 with meteorological and contaminative factors in Northeast China. We develop a generalized additive model with up to 6 months of maximum lag to analyze the impact of pollution factors on influenza cases and their interaction effects. We employ LASSO regression to identify the most significant environmental factors and conduct multiple complex regression analysis. In addition, quantile regression is taken to model the relation between influenza morbidity and specific percentiles (or quantiles) of meteorological factors.
Results
The influenza epidemic in Northeast China has shown an upward trend year by year. The excessive incidence of influenza in Northeast China may be attributed to the suspected primary air pollutant, NO2, which has been observed to have overall low levels during January, March, and June. The Age 15–24 group shows an increase in the relative risk of influenza with an increase in PM2.5 concentration, with a lag of 0–6 months (ERR 1.08, 95% CI 0.10–2.07). In the quantitative analysis of the interaction model, PM10 at the level of 100–120 μg/m3, PM2.5 at the level of 60–80 μg/m3, and NO2 at the level of 60 μg/m3 or more have the greatest effect on the onset of influenza. The GPR model behaves better among prediction models.
Conclusions
Exposure to the air pollutant NO2 is associated with an increased risk of influenza with a cumulative lag effect. Prioritizing winter and spring pollution monitoring and influenza prediction modeling should be our focus.
Publisher
Springer Science and Business Media LLC
Subject
Public Health, Environmental and Occupational Health
Reference30 articles.
1. Nair H, Brooks WA, Katz M, Roca A, Berkley JA, Madhi SA, Simmerman JM, Gordon A, Sato M, Howie S, et al. Global burden of respiratory infections due to seasonal influenza in young children: a systematic review and meta-analysis. Lancet. 2011;378(9807):1917–30.
2. Moyes J, Cohen C, Pretorius M, Groome M, von Gottberg A, Wolter N, Walaza S, Haffejee S, Chhagan M, Naby F, et al. Epidemiology of respiratory syncytial virus-associated acute lower respiratory tract infection hospitalizations among HIV-infected and HIV-uninfected South African children, 2010–2011. J Infect Dis. 2013;208(Suppl 3):S217-226.
3. Cohen C, Walaza S, Treurnicht FK, McMorrow M, Madhi SA, McAnerney JM, Tempia S. In- and out-of-hospital mortality associated with seasonal and Pandemic influenza and respiratory syncytial virus in South Africa, 2009–2013. Clin Infect Dis. 2018;66(1):95–103.
4. Wang Y, Zhang L, Wu SS, Duan W, Sun Y, Zhang M, Zhang XX, Zhang Y, Ma CN, Wang QY, et al. Application of the moving epidemic method in the development of epidemic thresholds and tiered warning alert approachs for influenza prevention in Beijing. Zhonghua Liu Xing Bing Xue Za Zhi. 2020;41(2):201–6.
5. MacIntyre CR, Cauchemez S, Dwyer DE, Seale H, Cheung P, Browne G, Fasher M, Wood J, Gao Z, Booy R, et al. Face mask use and control of respiratory virus transmission in households. Emerg Infect Dis. 2009;15(2):233–41.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献