TRIM58 functions as a tumor suppressor in colorectal cancer by promoting RECQL4 ubiquitination to inhibit the AKT signaling pathway

Author:

Sun Naizhi,Shen Jiacheng,Shi Yuhua,Liu Biao,Gao Shengguo,Chen Yichuan,Sun Jinwei

Abstract

Abstract Background This study aimed to investigate the underlying molecular mechanisms of TRIM58 in the development of colorectal cancer (CRC). CRC is one of the most common cancers of the digestive tract worldwide. The ubiquitin–proteasome system regulates many oncogenic or tumor-suppressive proteins. TRIM58, an E3 ubiquitin ligase and a member of the tripartite motif protein family, is a potential prognostic marker that indicates poor prognosis in cancer. Currently, the precise molecular mechanisms for the TRIM58-mediated CRC progression remain unclear. Methods To examine the effects of TRIM58 on cell viability, cell cycle progression, and apoptosis in CRC, Cell Counting Kit-8 and flow cytometry assays were employed. The AKT inhibitor LY294002 was used to examine the effects of AKT signaling on TRIM58-mediated cell viability, cell cycle progression, and apoptosis in CRC. Additionally, Co-IP and ubiquitination assays were used to examine the correlation between TRIM58 and RECQL4. Results TRIM58 overexpression inhibited CRC cell viability and promoted cell cycle arrest and apoptosis, in which the TRIM58 knockdown demonstrated inversed effects via the AKT signaling pathway. TRIM58 inhibited RECQL4 protein levels through its ubiquitin ligase activity, and RECQL4 overexpression inhibited TRIM58 overexpression-mediated CRC cell viability, cell cycle progression, and apoptosis. The downregulation of TRIM58 and upregulation of RECOL4 were observed in human CRC tissue, and TRIM58 demonstrated antitumor effects in CRC-induced tumor growth in a mouse model. Conclusions TRIM58 acts as a tumor suppressor in CRC through the promotion of RECQL4 ubiquitination and inhibition of the AKT signaling pathway and may be investigated for the successful treatment of CRC.

Publisher

Springer Science and Business Media LLC

Subject

Oncology,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3