Comprehensive clinicopathological significance and putative transcriptional mechanisms of Forkhead box M1 factor in hepatocellular carcinoma

Author:

Wu Hua-Yu,Luo Li-Feng,Wei Fang,Jiang Hong-Mian

Abstract

Abstract Background The Forkhead box M1 factor (FOXM1) is a crucial activator for cancer cell proliferation. While FOXM1 has been shown to promote hepatocellular carcinoma (HCC) progression, its transcriptional mechanisms remain incompletely understood. Methods We performed an in-house tissue microarray on 313 HCC and 37 non-HCC tissue samples, followed by immunohistochemical staining. Gene chips and high throughput sequencing data were used to assess FOXM1 expression and prognosis. To identify candidate targets of FOXM1, we comprehensively reanalyzed 41 chromatin immunoprecipitation followed by sequencing (ChIP-seq) data sets. We predicted FOXM1 transcriptional targets in HCC by intersecting candidate FOXM1 targets with HCC overexpressed genes and FOXM1 correlation genes. Enrichment analysis was employed to address the potential mechanisms of FOXM1 underlying HCC. Finally, single-cell RNA sequencing analysis was performed to confirm the transcriptional activity of FOXM1 on its predicted targets. Results This study, based on 4235 HCC tissue samples and 3461 non-HCC tissue samples, confirmed the upregulation of FOXM1 in HCC at mRNA and protein levels (standardized mean difference = 1.70 [1.42, 1.98]), making it the largest multi-centered study to do so. Among HCC patients, FOXM1 was increased in Asian and advanced subgroups, and high expression of FOXM1 had a strong ability to differentiate HCC tissue from non-HCC tissue (area under the curve = 0.94, sensitivity = 88.72%, specificity = 87.24%). FOXM1 was also shown to be an independent exposure risk factor for HCC, with a pooled hazard ratio of 2.00 [1.77, 2.26]. The predicted transcriptional targets of FOXM1 in HCC were predominantly enriched in nuclear division, chromosomal region, and catalytic activity acting on DNA. A gene cluster encoding nine transcriptional factors was predicted to be positively regulated by FOXM1, promoting the cell cycle signaling pathway in HCC. Finally, the transcriptional activity of FOXM1 and its targets was supported by single-cell analysis of HCC cells. Conclusions This study not only confirmed the upregulation of FOXM1 in HCC but also identified it as an independent risk factor. Moreover, our findings enriched our understanding of the complex transcriptional mechanisms underlying HCC pathogenesis, with FOXM1 potentially promoting HCC progression by activating other transcription factors within the cell cycle pathway.

Funder

Guangxi Natural Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Oncology,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3