Low m6A modification-mediated upregulation of PLAC8 promotes trophoblast cell invasion and migration in preeclampsia

Author:

Zhang Yajuan,Guo Xiaoguang,Chen Zhimin,Guo Ruixia

Abstract

Abstract Background The main symptoms of preeclampsia (PE), a specific ailment that develops during pregnancy, are proteinuria and hypertension. The pathological root of the onset and progression of PE is widely regarded as abnormal placental trophoblast cell function. This study aimed to look into the character and mechanism of Placenta-specific 8 (PLAC8) in trophoblast cell invasion and migration. Methods Expressions of PLAC8 and AlkB homologue 5 (ALKBH5) were examined by western blot and quantitative real-time PCR. The m6A level of PLAC8 mRNA was detected by methylated RNA Immunoprecipitation. Using Transwell experiments, cell invasion and migration were examined. The enzyme-linked immunosorbent assay was utilized to analyze the MMP-2 and MMP-9 secretion levels. RNA pull-down and RNA immunoprecipitation were conducted to detect the binding between ALKBH5 and PLAC8. Results In PE tissue and hypoxia-treated HTR-8/SVneo cells, levels of ALKBH5 and PLAC8 were increased, and PLAC8 m6A methylation levels were decreased. There was a positive correlation between PLAC8 and ALKBH5 expression in clinical tissues. In addition, overexpressing PLAC8 promoted HTR-8/SVneo cell migration and invasion, and so as the levels of MMP-2 and MMP-9; while interference with PLAC8 reduced the migration and invasion of hypoxia-treated HTR-8/SVneo cells, and so as the levels of MMP-2 and MMP-9. Moreover, the PLAC8 mRNA’s m6A modification site was GAACU (Position 1449, Site 2). Increased levels of MMP-2 and MMP-9, as well as migration and invasion of HTR-8/SVneo cells exposed to hypoxia, were all facilitated by the m6A Site2 mutation. Furthermore, ALKBH5 could bind to PLAC8, reduce its m6A modification, and promote its expression. Conclusion High-expressed ALKBH5 inhibits the m6A level of PLAC8 mRNA and promotes PLAC8 expression, while PLAC8 overexpression can promote hypoxia-induced invasion and migration of HTR-8/Svneo cells, indicating its potential protective function in PE.

Funder

2020 Young health science and technology Innovation Talents (leader): Physiological and Reproductive function protection of female benign and malignant tumor patients

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3