Identification of hub genes and their correlation with immune infiltrating cells in membranous nephropathy: an integrated bioinformatics analysis

Author:

Han Miaoru,Wang Yi,Huang Xiaoyan,Li Ping,Liang Xing,Wang Rongrong,Bao Kun

Abstract

Abstract Background Membranous nephropathy (MN) is a chronic glomerular disease that leads to nephrotic syndrome in adults. The aim of this study was to identify novel biomarkers and immune-related mechanisms in the progression of MN through an integrated bioinformatics approach. Methods The microarray data were downloaded from the Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) between MN and normal samples were identified and analyzed by the Gene Ontology analysis, the Kyoto Encyclopedia of Genes and Genomes analysis and the Gene Set Enrichment Analysis (GSEA) enrichment. Hub The hub genes were screened and identified by the weighted gene co-expression network analysis (WGCNA) and the least absolute shrinkage and selection operator (LASSO) algorithm. The receiver operating characteristic (ROC) curves evaluated the diagnostic value of hub genes. The single-sample GSEA analyzed the infiltration degree of several immune cells and their correlation with the hub genes. Results We identified a total of 574 DEGs. The enrichment analysis showed that metabolic and immune-related functions and pathways were significantly enriched. Four co-expression modules were obtained using WGCNA. The candidate signature genes were intersected with DEGs and then subjected to the LASSO analysis, obtaining a total of 6 hub genes. The ROC curves indicated that the hub genes were associated with a high diagnostic value. The CD4+ T cells, CD8+ T cells and B cells significantly infiltrated in MN samples and correlated with the hub genes. Conclusions We identified six hub genes (ZYX, CD151, N4BP2L2-IT2, TAPBP, FRAS1 and SCARNA9) as novel biomarkers for MN, providing potential targets for the diagnosis and treatment.

Funder

National Natural Science Foundation of China

the Special project of State Key Laboratory of Dampness Syndrome of Chinese Medicine

the 2020 Guangdong Provincial Science and Technology Innovation Strategy Special Fund

National Natural Science Foundation of China-Guangdong Joint Fund

the Guangzhou Science and Technology Plan Project

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3