Key pathways and genes that are altered during treatment with hyperbaric oxygen in patients with sepsis due to necrotizing soft tissue infection (HBOmic study)

Author:

Vinkel Julie,Rib Leonor,Buil Alfonso,Hedetoft Morten,Hyldegaard Ole

Abstract

Abstract Background For decades, the basic treatment strategies of necrotizing soft tissue infections (NSTI) have remained unchanged, primarily relying on aggressive surgical removal of infected tissue, broad-spectrum antibiotics, and supportive intensive care. One treatment strategy that has been proposed as an adjunctive measure to improve patient outcomes is hyperbaric oxygen (HBO2) treatment. HBO2 treatment has been linked to several immune modulatory effects; however, investigating these effects is complicated due to the disease's acute life-threatening nature, metabolic and cell homeostasis dependent variability in treatment effects, and heterogeneity with respect to both patient characteristics and involved pathogens. To embrace this complexity, we aimed to explore the underlying biological mechanisms of HBO2 treatment in patients with NSTI on the gene expression level. Methods We conducted an observational cohort study on prospective collected data, including 85 patients admitted to the intensive care unit (ICU) for NSTI. All patients were treated with one or two HBO2 treatments and had one blood sample taken before and after the intervention. Total RNAs from blood samples were extracted and mRNA purified with rRNA depletion, followed by whole-transcriptome RNA sequencing with a targeted sequencing depth of 20 million reads. A model for differentially expressed genes (DEGs) was fitted, and the functional aspects of the obtained set of genes was predicted with GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of genes and Genomes) enrichment analyses. All analyses were corrected for multiple testing with FDR. Results After sequential steps of quality control, a final of 160 biological replicates were included in the present study. We found 394 protein coding genes that were significantly DEGs between the two conditions with FDR < 0.01, of which 205 were upregulated and 189 were downregulated. The enrichment analysis of these DEGs revealed 20 GO terms in biological processes and 12 KEGG pathways that were significantly overrepresented in the upregulated DEGs, of which the term; “adaptive immune response” (GO:0002250) (FDR = 9.88E-13) and “T cell receptor signaling pathway” (hsa04660) (FDR = 1.20E-07) were the most significant. Among the downregulated DEGs two biological processes were significantly enriched, of which the GO term “apoptotic process” (GO:0006915) was the most significant (FDR = 0.001), followed by “Positive regulation of T helper 1 cell cytokine production” (GO:2000556), and “NF-kappa B signaling pathway” (hsa04064) was the only KEGG pathway that was significantly overrepresented (FDR = 0.001). Conclusions When one or two sessions of HBO2 treatment were administered to patients with a dysregulated immune response and systemic inflammation due to NSTI, the important genes that were regulated during the intervention were involved in activation of T helper cells and downregulation of the disease-induced highly inflammatory pathway NF-κB, which was associated with a decrease in the mRNA level of pro-inflammatory factors. Trial registration: Biological material was collected during the INFECT study, registered at ClinicalTrials.gov (NCT01790698).

Funder

Innovation Fund Denmark

Horizon 2020 Framework Programme

Nordforsk

Ellab-Fonden

Royal Library, Copenhagen University Library

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3