Exosomal NOX1 promotes tumor-associated macrophage M2 polarization-mediated cancer progression by stimulating ROS production in cervical cancer: a preliminary study

Author:

Gu Liying,Feng Chunyang,Li Meng,Hong Zubei,Di Wen,Qiu Lihua

Abstract

Abstract Background Cervical cancer the fourth most frequently diagnosed cancer and the fourth leading cause of cancer death in women, with an estimated 604,000 new cases and 342,000 deaths worldwide in 2020 for high rates of recurrence and metastasis. Identification of novel targets could aid in the prediction and treatment of cervical cancer. NADPH oxidase 1 (NOX1) gene-mediated production of reactive oxygen species (ROS) could induce migration and invasion of cervical cancer cells. Tumor-associated macrophages (TAMs) play important roles in cervical cancer. Tumor cell-derived exosomes mediate signal transduction between the tumor and tumor microenvironment. Elucidation of the mechanisms of NOX1-carrying exosomes involved in the regulation of TAMs may provide valuable insights into the progression of cervical cancer. Methods Uniformly standardized mRNA data of pan-carcinoma from the UCSC database were downloaded. Expression of NOX1 in tumor and adjacent normal tissues for each tumor type was calculated using R language software and significant differences were analyzed. SNP data set were downloaded for all TCGA samples processed using MuTect2 software from GDC. Cell experiment and animal tumor formation experiment were used to evaluate whether exosomal NOX1 stimulating ROS production to promote M2 polarization of TAM in cervical cancer. Results NOX1 is highly expressed with a low mutational frequency in pan-carcinoma. Upregulation of NOX1 may be associated with infiltration of M2-type macrophages in cervical cancer tissues, and NOX1 promotes malignant features of cervical cancer cells by stimulating ROS production. Exosomal NOX1 promotes M2 polarization of by stimulating ROS production. Exosomal NOX1 enhances progression of cervical cancer and M2 polarization in vivo by stimulating ROS production. Conclusion Exosomal NOX1 promotes TAM M2 polarization-mediated cancer progression through stimulating ROS production in cervical cancer.

Funder

Shanghai Jiao Tong University "Star of Jiao Tong University" Program Medical and Engineering Cross Research Fund

Clinical Scientific Research, Innovation and Cultivation Fund of Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine

Shanghai Municipal Health Commission Research Fund

the funding from National Key Research and Development Program of China

the National Natural Science Foundation of China

the Shanghai Municipal Key Clinical Specialty,the Clinical Research Plan of SHDC

Shanghai Science and Technology Innovation Action Plan

National Natural Science Foundation of China

Clinical Research Innovation and Cultivation Fund of Renji Hospital, Shanghai Jiao Tong University School of Medicine

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3