Gentiopicroside inhibits the progression of gastric cancer through modulating EGFR/PI3K/AKT signaling pathway

Author:

Chen Qishuai,Zhang Tongtong,Li Bingjun,Zhu Zhenguo,Ma Xiaomin,Zhang Yun,Li Linchuan,Zhu Jiankang,Zhang Guangyong

Abstract

Abstract Background This study was designed to clarify the function and potential mechanism of gentiopicroside (GPS) in regulating the malignant progression of gastric cancer (GC) through in vitro cellular experiments and in vivo animal models. Methods AGS and HGC27 cells were divided into control group and GPS treatment groups (50 µM and 100 µM). Then, the cellular proliferation, colony formation, migration, invasion, and apoptosis were detected, respectively. Transmission electron microscope (TEM) was used to observe the mitochondrial changes, and the mitochondrial membrane potential (MMP) was determined using the JC-1 commercial kit. Network pharmacology analysis was utilized to screen the potential molecule that may be related to the GPS activity on GC cells, followed by validation tests using Western blot in the presence of specific activator. In addition, xenografted tumor model was established using BALB/c nude mice via subcutaneous injection of HGC27 cells, along with pulmonary metastasis model. Then, the potential effects of GPS on the tumor growth and metastasis were detected by immunohistochemistry (IHC) and HE staining. Results GPS inhibited the proliferation, invasion and migration of GC cell lines in a dose-dependent manner. Besides, it could induce mitochondrial apoptosis. Epidermal growth factor receptor (EGFR) may be a potential target for GPS action in GC by network pharmacological analysis. GPS inhibits activation of the EGFR/PI3K/AKT axis by reducing EGFR expression. In vivo experiments indicated that GPS induced significant decrease in tumor volume, and it also inhibited the pulmonary metastasis. For the safety concerns, GPS caused no obvious toxicities to the heart, liver, spleen, lung and kidney tissues. IHC staining confirmed GPS downregulated the activity of EGFR/PI3K/AKT. Conclusions Our investigation demonstrated for the first time that GPS could inhibit GC malignant progression by targeting the EGFR/PI3K/AKT signaling pathway. This study indicated that GPS may be serve as a safe anti-tumor drug for further treatment of GC.

Funder

National Natural Science Foundation of China

Major Basic Research Project of Natural Science Foundation of Shandong Province

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3