Novel CAD–CAM fabrication of a custom-made ball attachment retentive housing: an in-vitro study

Author:

El Charkawi Hussein G.,Abdelaziz Medhat Sameh

Abstract

Abstract Purpose This study aims to evaluate the digitally designed ball attachment housing in its initial retentive force and after 2 years of simulated clinical use and to compare it with the regular nylon ball attachment housing. Materials and methods Twenty implants with their corresponding ball abutments (diameter 4.5 × 4.0 mm) were inserted in resin blocks. They were divided into two groups. In Group I, ten ball abutments each received their corresponding conventional attachment with nylon rings. In Group II, ten ball abutments received the novel CAD–CAM polyetheretherketone ball attachment housing. A universal testing machine was used to measure the retention force. The achieved maximum values of retention force were recorded at the beginning of the study (initial retention) and after 2 years of artificial ageing (2000 cycles of insertion and removal). Results were statistically analyzed using an independent sample T test. Results The PEEK attachment housing showed high retention forces (25.12 ± 0.99 N) compared to the conventional attachment with a nylon ring (15.76 ± 0.93 N) in the initial dislodgement test. There was a statistically significant difference in mean retention at the initial retention test and after 2 years of stimulated usage between the two studied groups, p = 0.000. Conclusions Within the limitations of this study, the novel CAD–CAM–PEEK attachment showed high retention characteristics compared to the conventional attachment with nylon rings, initially and after simulated long-term use.

Funder

The Science, Technology & Innovation Funding Authority

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3