Abnormal expression of fission and fusion genes and the morphology of mitochondria in eutopic and ectopic endometrium

Author:

Ye Chaoshuang,Chen Pei,Xu Bingning,Jin Yang,Pan Yongchao,Wu Tianyu,Du Yongjiang,Mao Jingxia,Wu Ruijin

Abstract

AbstractMitochondria play a pivotal role in physiological and metabolic function of the cell. Mitochondrial dynamics orchestrate mitochondrial function and morphology, involving fission and fusion as well as ultrastructural remodeling. Mounting evidence unravels the close link between mitochondria and endometriosis. However, how mitochondrial architecture changes through fission and fusion in eutopic and ectopic tissues of women with ovarian endometriosis remains unknown. We detected the expression of fission and fusion genes and the morphology of mitochondria in eutopic and ectopic endometrium in ovarian endometriosis. The results showed that the expression of DRP1 and LCLAT1 was upregulated in eutopic endometrial stromal cells (ESCs), and the expression of DRP1, OPA1, MFN1, MFN2, and LCLAT1 was significantly downregulated in ectopic ESCs, and reduced number of mitochondria, wider cristae width and narrower cristae junction width was observed, but there was no difference in cell survival rate. The altered mitochondrial dynamics and morphology might, respectively, provide an advantage for migration and adhesion in eutopic ESCs and be the adaptive response in ectopic endometrial cells to survive under hypoxic and oxidative stress environment.

Funder

Key Research and Development Program of Zhejiang Province

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. New insights on mitochondrial heteroplasmy observed in ovarian diseases;Journal of Advanced Research;2023-12

2. Experimental Zebrafish Models of Mitochondrial Dysfunction in the Pathogenesis of CNS Diseases;Journal of Evolutionary Biochemistry and Physiology;2023-11

3. The role of mitochondrial dynamics in the pathophysiology of endometriosis;Journal of Obstetrics and Gynaecology Research;2023-09-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3