Delineation and authentication of ferroptosis genes in ventilator-induced lung injury

Author:

Huang Enhao,Han Hanghang,Qin Ke,Du Xueke

Abstract

Abstract Background Mechanical ventilation, a critical support strategy for individuals enduring severe respiratory failure and general anesthesia, paradoxically engenders ventilator-induced lung injury (VILI). Ferrostatin-1 mitigates lung injury via ferroptosis inhibition, yet the specific ferroptosis genes contributing significantly to VILI remain obscure. Methods Leveraging the Gene Expression Omnibus database, we acquired VILI-associated datasets and identified differentially expressed genes (DEGs). To identify the hub genes, we constructed a protein–protein interaction network and used three parameters from CytoHubba. Consequently, we identified hub genes and ferroptosis genes as ferroptosis hub genes for VILI (VFHGs). We conducted enrichment analysis and established receiver operating characteristic (ROC) curves for VFHGs. Subsequently, to confirm the correctness of the VFHGs, control group mice and VILI mouse models, as well as external dataset validation, were established. For further research, a gene-miRNA network was established. Finally, the CIBERSORT algorithm was used to fill the gap in the immune infiltration changes in the lung during VILI. Results We identified 64 DEGs and 4 VFHGs (Il6,Ptgs2,Hmox1 and Atf3) closely related to ferroptosis. ROC curves demonstrated the excellent diagnostic performance of VFHGs in VILI. PCR and external dataset validation of the VILI model demonstrated the accuracy of VFHGs. Subsequently, the gene-miRNA network was successfully established. Ultimately, an Immune cell infiltration analysis associated with VILI was generated. Conclusions The results emphasize the importance of 4 VFHGs and their involvement in ferroptosis in VILI, confirming their potential as diagnostic biomarkers for VILI.

Funder

National Natural Science Foundation of China

Joint Project on Regional High-Incidence Diseases Research of Guangxi Natural Science Foundation

Guangxi Medical and Health Key Cultivation Discipline Construction Project

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3