Identification of a novel compound heterozygous mutation and a homozygous mutation of SLURP1 in Chinese families with Mal de Meleda

Author:

Wang Tian,Tang Zhuangli,Xiao Tong,Ren Junru,He Shuyao,Liu Yan,Xiao Shengxiang,Wang Xiaopeng

Abstract

Abstract Background Mal de Meleda is an autosomal recessive palmoplantar keratoderma, with SLURP1 identified as the pathogenic gene responsible. Although over 20 mutations in SLURP1 have been reported, only the mutation c.256G > A (p.G87R) has been detected in Chinese patients. Here, we report a novel heterozygous SLURP1 mutation in a Chinese family. Methods We assessed the clinical manifestations of two Chinese patients with Mal de Meleda and collected specimens from the patients and other family members for whole-exome and Sanger sequencing. We used algorithms (MutationTaster, SIFT, PolyPhen-2, PROVEAN, PANTHER, FATHMM, mCSM, SDM and DUET) to predict the pathogenetic potential of the mutation detected. We also employed AlphaFold2 and PyMOL for protein structure analysis. Results Both patients displayed the typical manifestation of palmoplantar keratoderma. In Proband 1, we detected a novel compound heterozygous mutation (c.243C > A and c.256G > A) in exon 3 of SLURP1. Proband 2 was an adult female born to a consanguineous family and carried a homozygous mutation (c.211C > T). Algorithms indicated both mutations to be probably disease causing. We used AlphaFold2 to predict the protein structure of these mutations and found that they cause instability, as shown by PyMOL. Conclusions Our study identified a novel compound heterozygous mutation (c.243C > A and c.256G > A) in a Chinese patient with Mal de Meleda that has the potential to cause instability in protein structure. Moreover, this study expands on the existing knowledge of SLURP1 mutations and contributes to knowledge of Mal de Meleda.

Funder

District Science Foundation program

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Genetics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3