Genome-wide analysis of aberrant methylation of enhancer DNA in human osteoarthritis

Author:

Lin Xiaozong,Li Li,Liu Xiaojuan,Tian Jun,Zheng Weizhuo,Li Jin,Wang Limei

Abstract

Abstract Background Osteoarthritis is a chronic musculoskeletal disease characterized by age-related gradual thinning and a high risk in females. Recent studies have shown that DNA methylation plays important roles in osteoarthritis. However, the genome-wide pattern of methylation in enhancers in osteoarthritis remains unclear. Methods To explore the function of enhancers in osteoarthritis, we quantified CpG methylation in human enhancers based on a public dataset that included methylation profiles of 470,870 CpG probes in 108 samples from patients with hip and knee osteoarthritis and hip tissues from healthy individuals. Combining various bioinformatics analysis tools, we systematically analyzed aberrant DNA methylation of the enhancers throughout the genome in knee osteoarthritis and hip osteoarthritis. Results We identified 16,816 differentially methylated CpGs, and nearly half (8111) of them were from enhancers, suggesting major DNA methylation changes in both types of osteoarthritis in the enhancer regions. A detailed analysis of hip osteoarthritis identified 2426 differentially methylated CpGs in enhancers between male and female patients, and 84.5% of them were hypomethylated in female patients and enriched in phenotypes related to hip osteoarthritis in females. Next, we explored the enhancer methylation dynamics among patients with knee osteoarthritis and identified 280 differentially methylated enhancer CpGs that were enriched in the human phenotypes and disease ontologies related to osteoarthritis. Finally, a comparison of enhancer methylation between knee osteoarthritis and hip osteoarthritis revealed organ source-dependent differences in enhancer methylation. Conclusion Our findings indicate that aberrant methylation of enhancers is related to osteoarthritis phenotypes, and a comprehensive atlas of enhancer methylation is useful for further analysis of the epigenetic regulation of osteoarthritis and the development of clinical drugs for treatment of osteoarthritis.

Publisher

Springer Science and Business Media LLC

Subject

Genetics(clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3