A glycogen storage disease type 1a patient with type 2 diabetes

Author:

Sun Yi,Qiang Wenhui,Wu Runze,Yin Tong,Yuan Jie,Yuan Jin,Gu Yunjuan

Abstract

Abstract Background Glycogen storage disease type 1a (GSD1a) is an inborn genetic disease caused by glucose-6-phosphatase-α (G6Pase-α) deficiency and is often observed to lead to endogenous glucose production disorders manifesting as hypoglycemia, hyperuricemia, hyperlipidemia, lactic acidemia, hepatomegaly, and nephromegaly. The development of GSD1a with diabetes is relatively rare, and the underlying pathogenesis remains unclear. Case presentation Here we describe a case of a 25-year-old Chinese female patient with GSD1a, who developed uncontrolled type 2 diabetes mellitus (T2DM) as a young adult. The patient was diagnosed with GSD1a disease at the age of 10 and was subsequently treated with an uncooked cornstarch diet. Recently, the patient was treated in our hospital for vomiting and electrolyte imbalance and was subsequently diagnosed with T2DM. Owing to the impaired secretory function of the patient’s pancreatic islets, liver dysfunction, hypothyroidism, severe hyperlipidemia, and huge hepatic adenoma, we adopted diet control, insulin therapy, and hepatic adenoma resection to alleviate this situation. The WES discovered compound heterozygous mutations at the exon 5 of G6PC gene at 17th chromosome in the patient, c.648G>T (p.L216 L, NM_000151.4, rs80356484) in her father and c.674T>C (p.L225 P, NM_000151.4, rs1555560128) in her mother. c.648G>T is a well-known splice-site mutation, which causes CTG changing to CTT at protein 216 and creates a new splicing site 91 bp downstream of the authentic splice site, though both codons encode leucine. c.674T>C is a known missense mutation that causes TGC to become CGC at protein 225, thereby changing from coding for leucine to coding for proline. Conclusion We report a rare case of GSD1a with T2DM. On the basis of the pathogenesis of GSD1a, we recommend attentiveness to possible development of fasting hypoglycemia caused by GSD and postprandial hyperglycemia from diabetes. As the disease is better identified and treated, and as patients with GSD live longer, this challenge may appear more frequently. Therefore, it is necessary to have a deeper and more comprehensive understanding of the pathophysiology of the disease and explore suitable treatment options.

Funder

six talent peaks project in jiangsu province

nantong municipal science and technology project

jiangsu provincial commission of health and family planning

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Genetics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3