Exploring the global immune landscape of peripheral blood mononuclear cells in H5N6-infected patient with single-cell transcriptomics

Author:

Gao Jiamin,Wei Jing,Qin Simei,Liu Sheng,Mo Shuangyan,Long Qian,Tan Shiji,Lu Ning,Xie Zhouhua,Lin Jianyan

Abstract

Abstract Background Avian influenza viruses (AIV), particularly H5N6, have risen in infection frequency, prompting major concerns. Single-cell RNA sequencing (scRNA-seq) can illustrate the immune cell landscape present in the peripheral circulation of influenza H5N6-infected individuals at the single-cell level. This study attempted to employ scRNA-seq technology to map the potentially hidden single cell landscape of influenza H5N6. Methods High-quality transcriptomes were generated from scRNA-seq data of peripheral blood mononuclear cells (PBMCs), which were taken from a critically-ill child diagnosed with H5N6 avian influenza infection and one healthy control donor. Cluster analysis was then performed on the scRNA-seq data to identify the different cell types. The pathways, pseudotime developmental trajectories and gene regulatory networks involved in different cell subpopulations were also explored. Results In total, 3,248 single cell transcriptomes were captured by scRNA-seq from PBMC of the child infected with H5N6 avian influenza and the healthy control donor and further identified seven immune microenvironment cell types. In addition, a subsequent subpopulation analysis of innate lymphoid cells (ILC) and CD4+ T cells revealed that subpopulations of ILC and CD4+ T cells were involved in cytokine and inflammation-related pathways and had significant involvement in the biological processes of oxidative stress and cell death. Conclusion In conclusion, characterizing the overall immune cell composition of H5N6-infected individuals by assessing the immune cell landscape in the peripheral circulation of H5N6 avian influenza-infected and healthy control donors at single-cell resolution provides key information for understanding H5N6 pathogenesis.

Funder

Nanning Science and Technology Major Project

Guangxi Zhuang Autonomous Region key research and development plans and emergency key projects

Nanning Scientific Research and Technology Key research and development Program

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Genetics

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3