Confounding factors in profiling of locus-specific human endogenous retrovirus (HERV) transcript signatures in primary T cells using multi-study-derived datasets

Author:

Hamann Martin V.,Adiba Maisha,Lange Ulrike C.

Abstract

Abstract Background Human endogenous retroviruses (HERV) are repetitive sequence elements and a substantial part of the human genome. Their role in development has been well documented and there is now mounting evidence that dysregulated HERV expression also contributes to various human diseases. While research on HERV elements has in the past been hampered by their high sequence similarity, advanced sequencing technology and analytical tools have empowered the field. For the first time, we are now able to undertake locus-specific HERV analysis, deciphering expression patterns, regulatory networks and biological functions of these elements. To do so, we inevitable rely on omics datasets available through the public domain. However, technical parameters inevitably differ, making inter-study analysis challenging. We here address the issue of confounding factors for profiling locus-specific HERV transcriptomes using datasets from multiple sources. Methods We collected RNAseq datasets of CD4 and CD8 primary T cells and extracted HERV expression profiles for 3220 elements, resembling most intact, near full-length proviruses. Looking at sequencing parameters and batch effects, we compared HERV signatures across datasets and determined permissive features for HERV expression analysis from multiple-source data. Results We could demonstrate that considering sequencing parameters, sequencing-depth is most influential on HERV signature outcome. Sequencing samples deeper broadens the spectrum of expressed HERV elements. Sequencing mode and read length are secondary parameters. Nevertheless, we find that HERV signatures from smaller RNAseq datasets do reliably reveal most abundantly expressed HERV elements. Overall, HERV signatures between samples and studies overlap substantially, indicating a robust HERV transcript signature in CD4 and CD8 T cells. Moreover, we find that measures of batch effect reduction are critical to uncover genic and HERV expression differences between cell types. After doing so, differences in the HERV transcriptome between ontologically closely related CD4 and CD8 T cells became apparent. Conclusion In our systematic approach to determine sequencing and analysis parameters for detection of locus-specific HERV expression, we provide evidence that analysis of RNAseq datasets from multiple studies can aid confidence of biological findings. When generating de novo HERV expression datasets we recommend increased sequence depth ( > = 100 mio reads) compared to standard genic transcriptome pipelines. Finally, batch effect reduction measures need to be implemented to allow for differential expression analysis.

Funder

Bundesministerium für Bildung und Forschung

Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases

Leibniz-Institut für Virologie

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Genetics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3