Enhancing unconfined compressive strength of stabilized soil with lime and cement prediction through a robust hybrid machine learning approach utilizing Naive Bayes Algorithm

Author:

Wan Weiqing

Abstract

AbstractThe unconfined compressive strength (UCS) of stabilized soil with lime and cement is a crucial mechanical factor in developing accurate geomechanical models. In the past, determining UCS required laborious laboratory testing of core samples or complex well-log analysis, both of which consumed many resources. This study introduces a novel method for real-time UCS prediction while acknowledging the need for efficiency. This method makes use of Specific Naive Bayes (NB) predictive models that are strengthened by the smell agent optimization (SAO) and the Dynamic Arithmetic Optimization Algorithm (DAOA), two reliable meta-heuristic algorithms. Combining these algorithms improves prediction precision while streamlining the process. By examining UCS samples from various soil types obtained from earlier stabilization tests, these models are validated. This study identifies three different models: NBDA, NBSA, and a single NB. The individual insights each model provides work in concert to increase the overall UCS prediction accuracy. This approach represents a significant advancement in UCS prediction methodologies, revealing a quick and effective method with wide-ranging implications for various geomechanical applications. Meta-heuristic algorithms combined with particular NB models produce promising results, opening up new possibilities for real-time UCS estimation across various geological scenarios. Especially noteworthy are the NBDA model’s impressive performance metrics. The entire dataset achieves an R2 value of 0.992 during testing. The RMSE of 108.69 for the NBDA model during the training phase also shows that it has the best performance overall. It consistently exhibits commendable generalization and predictive abilities that outperform those of the developed NB and NBSA models, highlighting its usefulness and effectiveness in practical applications.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3