Influence of tool nose angle on cutting performance in hot machining of Inconel 718

Author:

Liu Xin,Lin Xiaoliang,Jia Xiaowei,Li Yueyang,Shao Changfeng

Abstract

AbstractSuperalloy Inconel718 is an important material for aircraft preparation because of its excellent performance at high temperatures. However, when cutting Inconel718, a large amount of cutting heat will be generated, resulting in excessive tool temperature and serious wear, which accelerates the tool failure. In order to solve this problem, the influence of tool angle on the process of thermal aided machining was studied by simulation model combined with thermal aided machining technology. During the cutting process, the workpiece preheating temperature rises from room temperature 20° C to 500° C, the front tool angle range is − 5° to 10°, and the rear tool angle range is 4° to 16°. By analyzing various parameters, it was found that a smaller tool rake angle can effectively reduce the tool temperature. Additionally, a flank angle of around 12° was found to decrease the maximum wear area of the tool by approximately 10.5%. Moreover, it was observed that implementing heat-assisted machining can result in a significant reduction of tool temperature by 11.1%, as well as a decrease in cutting force ranging from 18 to 22%, particularly at temperatures exceeding 500 °C.

Funder

Youth Fund of Shandong Agriculture and Engineering University

Publisher

Springer Science and Business Media LLC

Reference30 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3