Bacteriomes in lesions of pulmonary tuberculosis and its association with status of Mycobacterium tuberculosis excretion

Author:

Du Weili,Zhao Yingli,Zhang Li,Che Jialu,Liu Zichen,Li Kun,Che Nanying

Abstract

Abstract Background Bacteria in lung play an important role in sustaining lung health. Understanding the characteristics of bacteriomes in lesions of pulmonary tuberculosis (TB) patients, who excrete Mycobacterium tuberculosis (MTB), is important for TB prevention and effective treatment.  Methods In this study, bacteriomes in lesions from TB patients excreting bacteria (TB-E) and those from TB patients not excreting bacteria (TB-NE) with matched normal lung tissues (NT) were compared by 16S rRNA sequencing. Bacterial MetaCyc functions in TB lesions were also predicted by PICRUSt2 tool. Results Alpha diversity of bacteria, including Chao 1 and Shannon indexes, for TB-E was significantly higher than those in TB-NE and NT; while for TB-NE group, Chao 1 index was higher than that in NT group. Predominant phyla in TB lesions and NT were Proteobacteria, Actinobacteria, Firmicutes, and Bacteroidetes, but analysis of similarity (ANOSIM, p < 0.001) revealed significantly different bacterial compositions among TB-E, TB-NE and NT samples. As for bacteriomes in TB lesions, a strong association (ANOSIM, p < 0.001) was observed with the status of MTB excretion. Indicator genera identified in TB-E and TB-NE demonstrated distinctive micro-ecological environments of TB lesions from patients with different clinical manifestations. Co-occurrence analysis revealed a densely-linked bacterial community in TB-NE compared to that in TB-E. MetaCyc functions responsible for menaquinone synthesis and chorismate metabolism that could potentially impact the persistent-state and nutrient metabolism of MTB were enriched in TB-E samples. While in TB-NE samples, enrichment of bacterial MetaCyc function responsible for heme b synthesis might contribute to TB pathology through ferroptosis. Conclusion Bacteriomes and their MetaCyc functions in TB lesions are elucidated, and they are associated with status of MTB excretion among pulmonary TB patients. These results serve as a basis for designing novel strategies for preventing and treating pulmonary TB disease.

Funder

Beijing Municipal Administration of Hospitals Incubating Program

National Natural Science Foundation of China

Beijing Municipal Science and Technology Project

Tongzhou High-level Technique Talents Program

Publisher

Springer Science and Business Media LLC

Subject

Microbiology (medical),Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3