Genetic diversity of macrolides resistant Staphylococcus aureus clinical isolates and the potential synergistic effect of vitamins, C and K3

Author:

El-Banna Tarek El-Said,Sonbol Fatma Ibrahim,Kamer Amal M. Abo,Badr Sara Ahmed Mohammed Mahmoud

Abstract

Abstract Background Macrolide antibiotics have been extensively used for the treatment of Staphylococcus aureus infections. However, the emergence of macrolide-resistant strains of S. aureus has become a major concern for public health. The molecular mechanisms underlying macrolide resistance in S. aureus are complex and diverse, involving both target site modification and efflux pump systems. In this study, we aim to overcome the molecular diversity of macrolide resistance mechanisms in S. aureus by identifying common molecular targets that could be exploited for the development of novel therapeutics. Methods About 300 Staphylococcus aureus different isolates were recovered and purified from 921 clinical specimen including urine (88), blood (156), sputum (264), nasal swabs (168), pus (181) and bone (39) collected from different departments in Tanta University Hospital. Macrolide resistant isolates were detected and tested for Multi Drug Resistant (MDR). Gel electrophoresis was performed after the D test and PCR reaction for erm(A), (B), (C), msr(A), and mph(C) genes. Finally, we tried different combinations of Erythromycin or Azithromycin antibiotics with either vitamin K3 or vitamin C. Results Macrolide resistance S. aureus isolates exhibited 7 major resistance patterns according to number of resistance markers and each pattern included sub patterns or subgroups. The PCR amplified products of different erm genes; analysis recorded different phenotypes of the Staphylococcus aureus isolates according to their different genotypes. In addition, our new tested combinations of Erythromycin and vitamin C, Erythromycin, and vitamin K3, Azithromycin and vitamin C and Azithromycin and vitamin K3 showed significant antibacterial effect when using every antibiotic alone. Our findings provide new insights into the molecular mechanisms of macrolide resistance in S. aureus and offer potential strategies for the development of novel protocols to overcome this emerging public health threat.

Funder

Tanta University

Publisher

Springer Science and Business Media LLC

Subject

Microbiology (medical),Microbiology

Reference63 articles.

1. Bhattacharya S, Bir R, Majumdar T. Evaluation of multidrug resistant Staphylococcus aureus and their association with biofilm production in a Tertiary Care Hospital, Tripura, Northeast India. J Clin Diagnos Res. 2015;9(9):DC01.

2. Sonbol FI, et al. Detection and Characterization of Staphylococcus aureus and Methicillin-resistant S aureus (MRSA) in Ear Infections in Tanta, Egypt. J Adv Med Pharmaceutical Res. 2022;3(2):36–44.

3. Archer NK, et al. Staphylococcus aureus biofilms: properties, regulation, and roles in human disease. Virulence. 2011;2(5):445–59.

4. Fair RJ, Tor Y. Antibiotics and bacterial resistance in the 21st century. Perspect Med Chem. 2014;6:PMC. S14459.

5. Balasubramanian D, et al. Staphylococcus aureus pathogenesis in diverse host environments. Pathogens Dis. 2017;75(1):ftx005.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3