Design of a two functional permeable reactive barrier for synergistic enzymatic and microbial bioremediation of phenol-contaminated waters: laboratory column evaluation

Author:

Mirdamadian Sayed Hossein,Asad Sedigheh,Dastgheib Seyed Mohammad Mehdi,Moghimi Hamid

Abstract

AbstractThe present study aimed to develop a system using a combination of enzymatic and microbial degradation techniques for removing phenol from contaminated water. In our prior research, the HRP enzyme extracted from horseradish roots was utilized within a core-shell microcapsule to reduce phenolic shock, serving as a monolayer column. To complete the phenol removal process, a second column containing degrading microorganisms was added to the last column in this research. Phenol-degrading bacteria were isolated from different microbial sources on a phenolic base medium. Additionally, encapsulated calcium peroxide nanoparticles were used to provide dissolved oxygen for the microbial population. Results showed that the both isolated strains, WC1 and CC1, were able to completely remove phenol from the contaminated influent water the range within 5 to 7 days, respectively. Molecular identification showed 99.8% similarity for WC1 isolate to Stenotrophomonas rizophila strain e-p10 and 99.9% similarity for CC1 isolate to Bacillus cereus strain IAM 12,605. The results also indicated that columns using activated sludge as a microbial source had the highest removal rate, with the microbial biofilm completely removing 100% of the 100 mg/L phenol concentration in contaminated influent water after 40 days. Finally, the concurrent use of core-shell microcapsules containing enzymes and capsules containing Stenotrophomonas sp. WC1 strain in two continuous column reactors was able to completely remove phenol from polluted water with a concentration of 500 mg/L for a period of 20 days. The results suggest that a combination of enzymatic and microbial degrading systems can be used as a new system to remove phenol from polluted streams with higher concentrations of phenol by eliminating the shock of phenol on the microbial population.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3