Elimination of blaKPC−2-mediated carbapenem resistance in Escherichia coli by CRISPR-Cas9 system

Author:

Tao Shuan,Chen Huimin,Li Na,Fang Yewei,Zhang He,Xu Yao,Chen Luyan,Liang Wei

Abstract

Abstract Objective The purpose of this study is to re-sensitive bacteria to carbapenemases and reduce the transmission of the blaKPC−2 gene by curing the blaKPC−2-harboring plasmid of carbapenem-resistant using the CRISPR-Cas9 system. Methods The single guide RNA (sgRNA) specifically targeted to the blaKPC−2 gene was designed and cloned into plasmid pCas9. The recombinant plasmid pCas9-sgRNA(blaKPC−2) was transformed into Escherichia coli (E.coli) carrying pET24-blaKPC−2. The elimination efficiency in strains was evaluated by polymerase chain reaction (PCR) and quantitative real-time PCR (qPCR). Susceptibility testing was performed by broth microdilution assay and by E-test strips (bioMérieux, France) to detect changes in bacterial drug resistance phenotype after drug resistance plasmid clearance. Results In the present study, we constructed a specific prokaryotic CRISPR-Cas9 system plasmid targeting cleavage of the blaKPC−2 gene. PCR and qPCR results indicated that prokaryotic CRISPR-Cas9 plasmid transforming drug-resistant bacteria can efficiently clear blaKPC−2-harboring plasmids. In addition, the drug susceptibility test results showed that the bacterial resistance to imipenem was significantly reduced and allowed the resistant model bacteria to restore susceptibility to antibiotics after the blaKPC−2-containing drug-resistant plasmid was specifically cleaved by the CRISPR-Cas system. Conclusion In conclusion, our study demonstrated that the one plasmid-mediated CRISPR-Cas9 system can be used as a novel tool to remove resistance plasmids and re-sensitize the recipient bacteria to antibiotics. This strategy provided a great potential to counteract the ever-worsening spread of the blaKPC−2 gene among bacterial pathogens and laid the foundation for subsequent research using the CRISPR-Cas9 system as adjuvant antibiotic therapy.

Funder

the Project of the key R & D program of 2022 year of Ningbo Science and Technology Bureau

Key Project of Ningbo Municipal Science and Technology Bureau

Publisher

Springer Science and Business Media LLC

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3