Diversity of endophytic fungal community in Huperzia serrata from different ecological areas and their correlation with Hup A content

Author:

Pang Bo,Yin Dengpan,Zhai Yufeng,He Anguo,Qiu Linlin,Liu Qiao,Ma Nan,Shen Hongjun,Jia Qiaojun,Liang Zongsuo,Wang Dekai

Abstract

Abstract Background Huperzine A (Hup A) has attracted considerable attention as an effective therapeutic candidate drug used to treat Alzheimer’s disease. Whereas, the production of Hup A from wild plants faced a major challenge, which is the wild Huperzia Serrata harbor a low Hup A content, has a long-life cycle, and has a small yield. At present, several reports showed that Hup A is produced by various endophytic fungal strains isolated from H. serrata, thereby providing an alternative method to produce the compound and reduce the consumption of this rare and endangered plant. However, till now, very few comprehensive studies are available on the biological diversity and structural composition of endophytic fungi and the effects of endophytic fungi on the Hup A accumulation in H. serrata. Results In this research, the composition and diversity of fungal communities in H. serrata were deciphered based on high-throughput sequencing technology of fungal internal transcribed spacer regions2 (ITS2). The correlation between endophytic fungal community and Hup A content was also investigated. Results revealed that the richness and the diversity of endophytic fungi in H. serrata was various according to different tissues and different ecological areas. The endophytic fungal communities of H. serrata exhibit species-specific, ecological-specific, and tissue-specific characteristics. There are 6 genera (Ascomycota_unclassified, Cyphellophora, Fungi_unclassified, Sporobolomyces, and Trichomeriaceae_unclassified) were significantly positively correlated with Hup A content in all two areas, whereas, there are 6 genera (Auricularia, Cladophialophora, Cryptococcus, Mortierella, and Mycena) were significantly negatively correlated with Hup A content of in all two areas. Conclusions This study indicated a different composition and diverse endophytic fungal communities in H. serrata from different organs and ecological areas. The current study will provide the realistic basis and theoretical significance for understanding the biological diversity and structural composition of endophytic fungal communities in H. serrata, as well as providing novel insights into the interaction between endophytic fungi and Hup A content.

Funder

Yuyao Science and Technology Planning Project

Key Research and Development Program of Zhejiang Province

Zhejiang Sci-Tech University scientific research fund

Publisher

Springer Science and Business Media LLC

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3