High prevalence of β-lactam and fluoroquinolone resistance in various phylotypes of Escherichia coli isolates from urinary tract infections in Jiroft city, Iran

Author:

Afsharikhah Saleh,Ghanbarpour Reza,Mohseni Parvin,Adib Nasrin,Bagheri Mahboube,Jajarmi Maziar

Abstract

Abstract Background Urinary tract infection (UTI) is one of the most prevalent infectious diseases with worldwide health threatening. Antimicrobial resistant strains of Escherichia coli (E. coli) are a common cause of UTI which were identified as a treatment challenge. This study aimed to assay the prevalence of common β-lactam resistance genes including blaTEM, blaSHV, blaCTX-M and blaCMY and phenotypic resistance to commonly used β-lactam and fluoroquinolone antibiotics in UTIs. These factors were evaluated in various phylogenetic groups (phylotypes) of E. coli isolates. Real-time PCR was applied to detect β-lactam resistance genes and conventional PCR was used to determine the phylotypes. Phenotypic resistance against β-lactams (ceftazidime, cefotaxime, aztreonam and ceftriaxone) and fluoroquinolones (ciprofloxacin) were identified by the disc diffusion technique. The ability of extended spectrum β-lactamases (ESBLs) production in E. coli isolates was detected using the combined disc diffusion method. Results The prevalence of resistance genes were 89.6% for blaTEM, 44.3% for blaCTX-M, 6.6% for blaSHV and 0.9% for blaCMY. The two high prevalent phylotypes were B2 (29.2%) and D (17.9%) followed by E (14.1%), F (9.4%), C (6.6%) and 10.3% of isolates were unknown in phylotyping. Disc diffusion results showed high prevalence of antibiotic resistance to cefotaxime (88.6%), aztreonam (83%), ceftireaxon (77.3%), ceftazidime (76.4%) and ciprofloxacin (55.6%). Totally, 52.8% of isolates were found as phenotypical ESBL-producers. Conclusions This study’s results confirmed an explosion of antibiotic resistance amongst E. coli isolates from UTI against β-lactams and fluoroquinolones. Findings explain the necessity of deep changes in quantity and quality of drug resistance diagnosis and antibiotic therapy strategies. More studies are suggested to better and confident evaluations.

Publisher

Springer Science and Business Media LLC

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3