Exploring flexible polynomial regression as a method to align routine clinical outcomes with daily data capture through remote technologies

Author:

Filipow Nicole,Main Eleanor,Tanriver Gizem,Raywood Emma,Davies Gwyneth,Douglas Helen,Laverty Aidan,Stanojevic Sanja

Abstract

Abstract Background Clinical outcomes are normally captured less frequently than data from remote technologies, leaving a disparity in volumes of data from these different sources. To align these data, flexible polynomial regression was investigated to estimate personalised trends for a continuous outcome over time. Methods Using electronic health records, flexible polynomial regression models inclusive of a 1st up to a 4th order were calculated to predict forced expiratory volume in 1 s (FEV1) over time in children with cystic fibrosis. The model with the lowest AIC for each individual was selected as the best fit. The optimal parameters for using flexible polynomials were investigated by comparing the measured FEV1 values to the values given by the individualised polynomial. Results There were 8,549 FEV1 measurements from 267 individuals. For individuals with > 15 measurements (n = 178), the polynomial predictions worked well; however, with < 15 measurements (n = 89), the polynomial models were conditional on the number of measurements and time between measurements. The method was validated using BMI in the same population of children. Conclusion Flexible polynomials can be used to extrapolate clinical outcome measures at frequent time intervals to align with daily data captured through remote technologies.

Funder

UCL, GOSH and Toronto SickKids studentship

Future Leaders Fellowship from UK Research & Innovation

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Epidemiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3