Flexible Bayesian semiparametric mixed-effects model for skewed longitudinal data

Author:

Ferede Melkamu M.,Dagne Getachew A.,Mwalili Samuel M.,Bilchut Workagegnehu H.,Engida Habtamu A.,Karanja Simon M.

Abstract

Abstract Background In clinical trials and epidemiological research, mixed-effects models are commonly used to examine population-level and subject-specific trajectories of biomarkers over time. Despite their increasing popularity and application, the specification of these models necessitates a great deal of care when analysing longitudinal data with non-linear patterns and asymmetry. Parametric (linear) mixed-effect models may not capture these complexities flexibly and adequately. Additionally, assuming a Gaussian distribution for random effects and/or model errors may be overly restrictive, as it lacks robustness against deviations from symmetry. Methods This paper presents a semiparametric mixed-effects model with flexible distributions for complex longitudinal data in the Bayesian paradigm. The non-linear time effect on the longitudinal response was modelled using a spline approach. The multivariate skew-t distribution, which is a more flexible distribution, is utilized to relax the normality assumptions associated with both random-effects and model errors. Results To assess the effectiveness of the proposed methods in various model settings, simulation studies were conducted. We then applied these models on chronic kidney disease (CKD) data and assessed the relationship between covariates and estimated glomerular filtration rate (eGFR). First, we compared the proposed semiparametric partially linear mixed-effect (SPPLM) model with the fully parametric one (FPLM), and the results indicated that the SPPLM model outperformed the FPLM model. We then further compared four different SPPLM models, each assuming different distributions for the random effects and model errors. The model with a skew-t distribution exhibited a superior fit to the CKD data compared to the Gaussian model. The findings from the application revealed that hypertension, diabetes, and follow-up time had a substantial association with kidney function, specifically leading to a decrease in GFR estimates. Conclusions The application and simulation studies have demonstrated that our work has made a significant contribution towards a more robust and adaptable methodology for modeling intricate longitudinal data. We achieved this by proposing a semiparametric Bayesian modeling approach with a spline smoothing function and a skew-t distribution.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3