Bi-directional regulation of AIMP2 and its splice variant on PARP-1-dependent neuronal cell death; Therapeutic implication for Parkinson's disease

Author:

Lee Min Hak,Um Ki-Hwan,Lee Seok Won,Sun Ye Ji,Gu Da-Hye,Jo Young Ok,Kim Sung Hyun,Seol Wongi,Hwang Hyorin,Baek Kyunghwa,Choi Jin WooORCID

Abstract

Abstract Background Parthanatos represents a critical molecular aspect of Parkinson's disease, wherein AIMP2 aberrantly activates PARP-1 through direct physical interaction. Although AIMP2 ought to be a therapeutic target for the disease, regrettably, it is deemed undruggable due to its non-enzymatic nature and predominant localization within the tRNA synthetase multi-complex. Instead, AIMP2 possesses an antagonistic splice variant, designated DX2, which counteracts AIMP2-induced apoptosis in the p53 or inflammatory pathway. Consequently, we examined whether DX2 competes with AIMP2 for PARP-1 activation and is therapeutically effective in Parkinson’s disease. Methods The binding affinity of AIMP2 and DX2 to PARP-1 was contrasted through immunoprecipitation. The efficacy of DX2 in neuronal cell death was assessed under 6-OHDA and H2O2 in vitro conditions. Additionally, endosomal and exosomal activity of synaptic vesicles was gauged in AIMP2 or DX2 overexpressed hippocampal primary neurons utilizing optical live imaging with VAMP-vGlut1 probes. To ascertain the role of DX2 in vivo, rotenone-induced behavioral alterations were compared between wild-type and DX2 transgenic animals. A DX2-encoding self-complementary adeno-associated virus (scAAV) was intracranially injected into 6-OHDA induced in vivo animal models, and their mobility was examined. Subsequently, the isolated brain tissues were analyzed. Results DX2 translocates into the nucleus upon ROS stress more rapidly than AIMP2. The binding affinity of DX2 to PARP-1 appeared to be more robust compared to that of AIMP2, resulting in the inhibition of PARP-1 induced neuronal cell death. DX2 transgenic animals exhibited neuroprotective behavior in rotenone-induced neuronal damage conditions. Following a single intracranial injection of AAV-DX2, both behavior and mobility were consistently ameliorated in neurodegenerative animal models induced by 6-OHDA. Conclusion AIMP2 and DX2 are proposed to engage in bidirectional regulation of parthanatos. They physically interact with PARP-1. Notably, DX2's cell survival properties manifest exclusively in the context of abnormal AIMP2 accumulation, devoid of any tumorigenic effects. This suggests that DX2 could represent a distinctive therapeutic target for addressing Parkinson's disease in patients.

Funder

Ministry of Science and ICT, South Korea

Ministry of Food and Drug Safety

Ministry of Health and Welfare

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,Neurology (clinical),Pathology and Forensic Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3