Regional vulnerability of brain white matter in vanishing white matter

Author:

Man Jodie H.K.,van Gelder Charlotte A.G.H.,Breur Marjolein,Molenaar Douwe,Abbink Truus,Altelaar Maarten,Bugiani MariannaORCID,van der Knaap Marjo S.

Abstract

AbstractVanishing white matter (VWM) is a leukodystrophy that primarily manifests in young children. In this disease, the brain white matter is differentially affected in a predictable pattern with telencephalic brain areas being most severely affected, while others remain allegedly completely spared. Using high-resolution mass spectrometry-based proteomics, we investigated the proteome patterns of the white matter in the severely affected frontal lobe and normal appearing pons in VWM and control cases to identify molecular bases underlying regional vulnerability. By comparing VWM patients to controls, we identified disease-specific proteome patterns. We showed substantial changes in both the VWM frontal and pons white matter at the protein level. Side-by-side comparison of brain region-specific proteome patterns further revealed regional differences. We found that different cell types were affected in the VWM frontal white matter than in the pons. Gene ontology and pathway analyses identified involvement of region specific biological processes, of which pathways involved in cellular respiratory metabolism were overarching features. In the VWM frontal white matter, proteins involved in glycolysis/gluconeogenesis and metabolism of various amino acids were decreased compared to controls. By contrast, in the VWM pons white matter, we found a decrease in proteins involved in oxidative phosphorylation. Taken together, our data show that brain regions are affected in parallel in VWM, but to different degrees. We found region-specific involvement of different cell types and discovered that cellular respiratory metabolism is likely to be differentially affected across white matter regions in VWM. These region-specific changes help explain regional vulnerability to pathology in VWM.

Funder

ZonMw

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,Neurology (clinical),Pathology and Forensic Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3