Experimental Study on Damage Evaluation, Pore Structure and Impact Tensile Behavior of 10-Year-Old Concrete Cores After Exposure to High Temperatures

Author:

Chen XudongORCID,Shi Dandan,Guo Shengshan

Abstract

AbstractHigh temperatures impose a negative effect on the mechanical properties of concrete. An experimental setup designed by the theory of nonlinear resonance vibration, the method of mercury intrusion porosimetry (MIP) and split Hopkinson pressure bar (SHPB) were used to test damage, porosity and mechanical properties of the pre-heated Brazilian discs of 10-year-old concrete respectively. According to the nondestructive test, the hysteretic nonlinearity parameters βh became larger as the temperature went up. The damage calculated by βh, which was 0, 0.57, 0.88 and 0.95 at 20 °C, 200 °C, 400 °C and 600 °C respectively, could be fitted by a power function. Based on MIP, the compound lognormal distribution model was used to simulate the pore size distributions. The quantitative relationship between porosity and damage was established by a power function, with the porosities of 13.96% at 20 °C, 15.77% at 200 °C, 19.17% at 400 °C and 20.22% at 600 °C. Finally, by the method of impact splitting tensile tests under gas pressures of 0.3 MPa, 0.4 MPa and 0.5 MPa, which represented impact velocity of 7.11 m/s, 10.26 m/s and 13.02 m/s respectively, the dynamic tensile strengths were obtained and the quantitative relationship between damage and macroscopic splitting tensile strength was established and the average value of exponential parameter b was 0.281.

Funder

National Natural Science Foundation of China

Natural Science Foundation for Excellent Young Scholars of Jiangsu Province

Young Elite Scientists Sponsorship Program by China Association for Science and Technology

Publisher

Springer Science and Business Media LLC

Subject

Ocean Engineering,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3