Abstract
AbstractHigh temperatures impose a negative effect on the mechanical properties of concrete. An experimental setup designed by the theory of nonlinear resonance vibration, the method of mercury intrusion porosimetry (MIP) and split Hopkinson pressure bar (SHPB) were used to test damage, porosity and mechanical properties of the pre-heated Brazilian discs of 10-year-old concrete respectively. According to the nondestructive test, the hysteretic nonlinearity parameters βh became larger as the temperature went up. The damage calculated by βh, which was 0, 0.57, 0.88 and 0.95 at 20 °C, 200 °C, 400 °C and 600 °C respectively, could be fitted by a power function. Based on MIP, the compound lognormal distribution model was used to simulate the pore size distributions. The quantitative relationship between porosity and damage was established by a power function, with the porosities of 13.96% at 20 °C, 15.77% at 200 °C, 19.17% at 400 °C and 20.22% at 600 °C. Finally, by the method of impact splitting tensile tests under gas pressures of 0.3 MPa, 0.4 MPa and 0.5 MPa, which represented impact velocity of 7.11 m/s, 10.26 m/s and 13.02 m/s respectively, the dynamic tensile strengths were obtained and the quantitative relationship between damage and macroscopic splitting tensile strength was established and the average value of exponential parameter b was 0.281.
Funder
National Natural Science Foundation of China
Natural Science Foundation for Excellent Young Scholars of Jiangsu Province
Young Elite Scientists Sponsorship Program by China Association for Science and Technology
Publisher
Springer Science and Business Media LLC
Subject
Ocean Engineering,Civil and Structural Engineering
Reference50 articles.
1. Abeele, E. A. V. D., & Carmeliet, J. (2000). Nonlinear elastic wave spectroscopy (news) techniques to discern material damage, part II: Single-mode nonlinear resonance acoustic spectroscopy. Research in Nondestructive Evaluation, 12(1), 31–42.
2. Abeele, E. A. V. D., Johnson, P. A., & Sutin, A. (2000). Nonlinear elastic wave spectroscopy (news) techniques to discern material damage, part I: Nonlinear wave modulation spectroscopy (nwms). Research in Nondestructive Evaluation, 12(1), 17–30.
3. Abeele, E. A. V. D., Sutin, A., Carmeliet, J., & Johnson, P. A. (2001). Micro-damage diagnostics using nonlinear elastic wave spectroscopy (news). NDT&E International, 34(4), 239–248.
4. ASTM. (2004). Standard specification for concrete aggregates. West Conshohocken: ASTM C33.
5. Bažant, Z. P., & Kaplan, M. F. (1996). Concrete at high temperatures: Material properties and mathematical models. London: Longman.
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献